期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Hom-Yang-Baxter方程的解 被引量:2
1
作者 刘红江 于云霞 《许昌学院学报》 CAS 2013年第2期14-16,共3页
研究了Hom-Yang-Baxter方程的解,分别从代数和余代数构造了两类Hom-Yang-Baxter方程的解.
关键词 Hom—Yang—Baxter方程 代数 余代数
在线阅读 下载PDF
Hom-(余)代数上的Hom-Yang-Baxter方程的解
2
作者 刘红江 李庆芳 《新乡学院学报》 2018年第6期1-3,共3页
分别从Yetter-Drinfeld模和Hom-(余)代数结构出发,构造了三类Hom-Yang-Baxter方程的解。
关键词 hom-yang-baxter方程 Yetter-Drinfeld模 Hom-(余)代数
在线阅读 下载PDF
Witt型Hom-李超双代数(英文) 被引量:2
3
作者 张明亮 程永胜 《河南大学学报(自然科学版)》 CAS 北大核心 2013年第2期120-124,共5页
作者介绍了q-形变的Witt超双代数,它是一种Hom-李超双代数.进一步,作者给出了与该代数相关的Hom-Yang-Baxter方程的解.
关键词 q-形变的Hom-型Witt超代数 Hom-型李超双代数 hom-yang-baxter方程
在线阅读 下载PDF
Purely Hom-Lie bialgebras 被引量:3
4
作者 Liqiang Cai Yunhe Sheng 《Science China Mathematics》 SCIE CSCD 2018年第9期1553-1566,共14页
In this paper, we first show that there is a Hom-Lie algebra structure on the set of(σ, σ)-derivations of an associative algebra. Then we construct the dual representation of a representation of a Hom-Lie algebra.We... In this paper, we first show that there is a Hom-Lie algebra structure on the set of(σ, σ)-derivations of an associative algebra. Then we construct the dual representation of a representation of a Hom-Lie algebra.We introduce the notions of a Manin triple for Hom-Lie algebras and a purely Hom-Lie bialgebra. Using the coadjoint representation, we show that there is a one-to-one correspondence between Manin triples for Hom-Lie algebras and purely Hom-Lie bialgebras. Finally, we study coboundary purely Hom-Lie bialgebras and construct solutions of the classical Hom-Yang-Baxter equations in some special Hom-Lie algebras using Hom-O-operators. 展开更多
关键词 Horn-Lie algebras Manin triples purely Horn-Lie bialgebras classical hom-yang-baxter equations
原文传递
Double Biproduct Hom-Bialgebra and Related Quasitriangular Structures
5
作者 Tianshui MA Haiying LI Linlin LIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第6期929-950,共22页
Let (H,β) be a Hom-bialgebra such that β^2 = idH. (A, αA) is a Hom-bialgebra in the left-left Hom-Yetter-Drinfeld category H^HYD and (B, αB) is a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category... Let (H,β) be a Hom-bialgebra such that β^2 = idH. (A, αA) is a Hom-bialgebra in the left-left Hom-Yetter-Drinfeld category H^HYD and (B, αB) is a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category YDH^H. The authors define the two-sided smash product Hom-algebra (A H B, αA β αB) and the two-sided smash coproduct Hom- coalgebra (A H B, αA β αB). Then the necessary and sufficient conditions for (A H B, αA β αB) and (A H B, αA β αB) to be a Hom-bialgebra (called the double biproduct Hom-bialgebra and denoted by (A H B, αA β αB)) are derived. On the other hand, the necessary and sufficient conditions for the smash coproduct Hom-Hopf algebra (A H B, αA β) to be quasitriangular are given. 展开更多
关键词 Double biproduct Hom-Yetter-Drinfeld category Radford's biproduct hom-yang-baxter equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部