In this article,we construct free centroid hom-associative algebras and free centroid hom-Lie algebras.We also construct some other relatively free centroid hom-associative algebras by applying the Gr?bner-Shirshov ba...In this article,we construct free centroid hom-associative algebras and free centroid hom-Lie algebras.We also construct some other relatively free centroid hom-associative algebras by applying the Gr?bner-Shirshov basis theory for(unital)centroid hom-associative algebras.Finally,we prove that the"Poincaré-Birkhoff-Witt theorem"holds for certain type of centroid hom-Lie algebras over a field of characteristic 0,namely,every centroid hom-Lie algebra such that the eigenvectors of the mapβlinearly generates the whole algebra can be embedded into its universal enveloping centroid hom-associative algebra,and the linear basis of the universal enveloping algebra does not depend on the multiplication table of the centroid hom-Lie algebra under consideration.展开更多
The aim of this article is to introduce the notion of Hom-Lie H-pseudo-superalgebras for any Hopf algebra H. This class of algebras is a natural generalization of the Hom-Lie pseudo-algebras as well as a special case ...The aim of this article is to introduce the notion of Hom-Lie H-pseudo-superalgebras for any Hopf algebra H. This class of algebras is a natural generalization of the Hom-Lie pseudo-algebras as well as a special case of the Hom-Lie superalgebras. We present some construction theorems of Hom-Lie H-pseudo-superalgebras, reformulate the equivalent definition of Hom-Lie H-pseudo-super-algebras, and consider the cohomology theory of Hom-Lie H-pseudo-superalgebras with coefficients in arbitrary Hom-modules as a generalization of Kac’s result.展开更多
Let A be a multiplicative Hom-associative algebra and L a multiplicative Hom-Lie algebra together with surjective twisting maps. We show that if A is a sum of two commutative Hom-associative subalgebras, then the comm...Let A be a multiplicative Hom-associative algebra and L a multiplicative Hom-Lie algebra together with surjective twisting maps. We show that if A is a sum of two commutative Hom-associative subalgebras, then the commutator Hom-ideal is nilpotent. Furthermore, we obtain an analogous result for Hom-Lie algebra L extending Kegel's Theorem. Finally, we discuss the Hom-Lie ideal structure of a simple Hom-associative algebra A by showing that any non-commutative Hom-Lie ideal of A must contain [A, A].展开更多
基金the grant of Guangzhou Civil Aviation College(Grant No.22X0430)the RAS Fundamental Research Program(Grant No.FWNF-2022-0002)+2 种基金the NNSF of China(Grant Nos.11571121,12071156)the NNSF of China(Grant No.12101248)the China Postdoctoral Science Foundation(Grant No.2021M691099)。
文摘In this article,we construct free centroid hom-associative algebras and free centroid hom-Lie algebras.We also construct some other relatively free centroid hom-associative algebras by applying the Gr?bner-Shirshov basis theory for(unital)centroid hom-associative algebras.Finally,we prove that the"Poincaré-Birkhoff-Witt theorem"holds for certain type of centroid hom-Lie algebras over a field of characteristic 0,namely,every centroid hom-Lie algebra such that the eigenvectors of the mapβlinearly generates the whole algebra can be embedded into its universal enveloping centroid hom-associative algebra,and the linear basis of the universal enveloping algebra does not depend on the multiplication table of the centroid hom-Lie algebra under consideration.
文摘The aim of this article is to introduce the notion of Hom-Lie H-pseudo-superalgebras for any Hopf algebra H. This class of algebras is a natural generalization of the Hom-Lie pseudo-algebras as well as a special case of the Hom-Lie superalgebras. We present some construction theorems of Hom-Lie H-pseudo-superalgebras, reformulate the equivalent definition of Hom-Lie H-pseudo-super-algebras, and consider the cohomology theory of Hom-Lie H-pseudo-superalgebras with coefficients in arbitrary Hom-modules as a generalization of Kac’s result.
基金Supported by the Excellent Young Talents Fund Project of Anhui Province(Grant No.2013SQRL092ZD)the Natural Science Foundation of Anhui Province(Grant Nos.1408085QA06+2 种基金1408085QA08)the Excellent Young Talents Fund Project of Chuzhou University(Grant No.2013RC001)the Research and Innovation Projectfor College Graduates of Jiangsu Province(Grant No.CXLX12-0071)
文摘Let A be a multiplicative Hom-associative algebra and L a multiplicative Hom-Lie algebra together with surjective twisting maps. We show that if A is a sum of two commutative Hom-associative subalgebras, then the commutator Hom-ideal is nilpotent. Furthermore, we obtain an analogous result for Hom-Lie algebra L extending Kegel's Theorem. Finally, we discuss the Hom-Lie ideal structure of a simple Hom-associative algebra A by showing that any non-commutative Hom-Lie ideal of A must contain [A, A].