An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste...An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.展开更多
Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and ...Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and complex backgrounds,remains a challenge for computer vision systems.This study evaluates the impact of three image enhancement techniques—Histogram Equalization(HE),Contrast Limited Adaptive Histogram Equalization(CLAHE),and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke.The D-Fire dataset,consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels,was used to train and evaluate the model.Each enhancement method was applied to the dataset before training.Model performance was assessed using multiple metrics,including Precision,Recall,mean Average Precision at 50%IoU(mAP50),F1-score,and visual inspection through bounding box results.Experimental results show that all three enhancement techniques improved detection performance.HE yielded the highest mAP50 score of 0.771,along with a balanced precision of 0.784 and recall of 0.703,demonstrating strong generalization across different conditions.DBST-LCM CLAHE achieved the highest Precision score of 79%,effectively reducing false positives,particularly in scenes with dispersed smoke or complex textures.CLAHE,with slightly lower overall metrics,contributed to improved local feature detection.Each technique showed distinct advantages:HE enhanced global contrast;CLAHE improved local structure visibility;and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation.These results underline the importance of selecting preprocessing methods according to detection priorities,such as minimizing false alarms or maximizing completeness.This research does not propose a new model architecture but rather benchmarks a recent lightweight detector,YOLOv11,combined with image enhancement strategies for practical deployment in FLF monitoring.The findings support the integration of preprocessing techniques to improve detection accuracy,offering a foundation for real-time FLF detection systems on edge devices or drones,particularly in regions like Indonesia.展开更多
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited...AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.展开更多
BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpres...BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpression occurs in approximately 15%-20%of advanced GC cases,directly affecting treatment-related decisions.Spectral-computed tomography(sCT)enables the quantification of material compositions,and sCT iodine concentration parameters have been demonstrated to be useful for the diagnosis of GC and prediction of its invasion depth,angioge-nesis,and response to systemic chemotherapy.No existing report describes the prediction of GC HER2 status through histogram analysis based on sCT iodine maps(IMs).AIM To investigate whether whole-volume histogram analysis of sCT IMs enables the prediction of the GC HER2 status.METHODS This study was performed with data from 101 patients with pathologically confirmed GC who underwent preoperative sCT examinations.Nineteen parameters were extracted via sCT IM histogram analysis:The minimum,maximum,mean,standard deviation,variance,coefficient of variation,skewness,kurtosis,entropy,percentiles(1st,5th,10th,25th,50th,75th,90th,95th,and 99th),and lesion volume.Spearman correlations of the parameters with the HER2 status and clinicopathological parameters were assessed.Receiver operating characteristic curves were used to evaluate the parameters’diagnostic performance.RESULTS Values for the histogram parameters of the maximum,mean,standard deviation,variance,entropy,and percentiles were significantly lower in the HER2+group than in the HER2–group(all P<0.05).The GC differentiation and Lauren classification correlated significantly with the HER2 status of tumor tissue(P=0.001 and 0.023,respectively).The 99th percentile had the largest area under the curve for GC HER2 status identification(0.740),with 76.2%,sensitivity,65.0%specificity,and 67.3%accuracy.All sCT IM histogram parameters correlated positively with the GC HER2 status(r=0.237-0.337,P=0.001-0.017).CONCLUSION Whole-lesion histogram parameters derived from sCT IM analysis,and especially the 99th percentile,can serve as imaging biomarkers of HER2 overexpression in GC.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作识别方法。选用深度阈值法分割动态多点手势图像,提取出手掌中最大的圆细化手部区域,获取7维手部HOG(Histogram of Oriented Gradients)特...针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作识别方法。选用深度阈值法分割动态多点手势图像,提取出手掌中最大的圆细化手部区域,获取7维手部HOG(Histogram of Oriented Gradients)特征向量,完成手势动作图像预处理。引入支持向量机,并且通过误差项改进该算法。采用改进后的支持向量机最优线性分类特征向量,利用支持向量机输入分类后的手势特征向量,实现动态多点手势动作识别。实验结果表明,所提方法受光照影响波动小,在有光照情况下,识别率达到92.5%以上,而无光照情况下,识别率仍高于90.0%,并且图像分割信息完整、识别准确性高。展开更多
基金National Key Research and Development Program of China(2022YFB2804401)。
文摘An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range.
基金funded by the Directorate of Research,Technology,and Community Service,Ministry of Higher Education,Science,and Technology of the Republic of Indonesia the Regular Fundamental Research scheme,with grant numbers 001/LL6/PL/AL.04/2025,011/SPK-PFR/RIK/05/2025.
文摘Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and complex backgrounds,remains a challenge for computer vision systems.This study evaluates the impact of three image enhancement techniques—Histogram Equalization(HE),Contrast Limited Adaptive Histogram Equalization(CLAHE),and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke.The D-Fire dataset,consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels,was used to train and evaluate the model.Each enhancement method was applied to the dataset before training.Model performance was assessed using multiple metrics,including Precision,Recall,mean Average Precision at 50%IoU(mAP50),F1-score,and visual inspection through bounding box results.Experimental results show that all three enhancement techniques improved detection performance.HE yielded the highest mAP50 score of 0.771,along with a balanced precision of 0.784 and recall of 0.703,demonstrating strong generalization across different conditions.DBST-LCM CLAHE achieved the highest Precision score of 79%,effectively reducing false positives,particularly in scenes with dispersed smoke or complex textures.CLAHE,with slightly lower overall metrics,contributed to improved local feature detection.Each technique showed distinct advantages:HE enhanced global contrast;CLAHE improved local structure visibility;and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation.These results underline the importance of selecting preprocessing methods according to detection priorities,such as minimizing false alarms or maximizing completeness.This research does not propose a new model architecture but rather benchmarks a recent lightweight detector,YOLOv11,combined with image enhancement strategies for practical deployment in FLF monitoring.The findings support the integration of preprocessing techniques to improve detection accuracy,offering a foundation for real-time FLF detection systems on edge devices or drones,particularly in regions like Indonesia.
文摘AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.
基金Supported by Science and Technology Program of Fujian Province,No.2021J01430Joint Funds for the Innovation of Science and Technology of Fujian Province,No.2021Y9229.
文摘BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpression occurs in approximately 15%-20%of advanced GC cases,directly affecting treatment-related decisions.Spectral-computed tomography(sCT)enables the quantification of material compositions,and sCT iodine concentration parameters have been demonstrated to be useful for the diagnosis of GC and prediction of its invasion depth,angioge-nesis,and response to systemic chemotherapy.No existing report describes the prediction of GC HER2 status through histogram analysis based on sCT iodine maps(IMs).AIM To investigate whether whole-volume histogram analysis of sCT IMs enables the prediction of the GC HER2 status.METHODS This study was performed with data from 101 patients with pathologically confirmed GC who underwent preoperative sCT examinations.Nineteen parameters were extracted via sCT IM histogram analysis:The minimum,maximum,mean,standard deviation,variance,coefficient of variation,skewness,kurtosis,entropy,percentiles(1st,5th,10th,25th,50th,75th,90th,95th,and 99th),and lesion volume.Spearman correlations of the parameters with the HER2 status and clinicopathological parameters were assessed.Receiver operating characteristic curves were used to evaluate the parameters’diagnostic performance.RESULTS Values for the histogram parameters of the maximum,mean,standard deviation,variance,entropy,and percentiles were significantly lower in the HER2+group than in the HER2–group(all P<0.05).The GC differentiation and Lauren classification correlated significantly with the HER2 status of tumor tissue(P=0.001 and 0.023,respectively).The 99th percentile had the largest area under the curve for GC HER2 status identification(0.740),with 76.2%,sensitivity,65.0%specificity,and 67.3%accuracy.All sCT IM histogram parameters correlated positively with the GC HER2 status(r=0.237-0.337,P=0.001-0.017).CONCLUSION Whole-lesion histogram parameters derived from sCT IM analysis,and especially the 99th percentile,can serve as imaging biomarkers of HER2 overexpression in GC.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.
文摘针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作识别方法。选用深度阈值法分割动态多点手势图像,提取出手掌中最大的圆细化手部区域,获取7维手部HOG(Histogram of Oriented Gradients)特征向量,完成手势动作图像预处理。引入支持向量机,并且通过误差项改进该算法。采用改进后的支持向量机最优线性分类特征向量,利用支持向量机输入分类后的手势特征向量,实现动态多点手势动作识别。实验结果表明,所提方法受光照影响波动小,在有光照情况下,识别率达到92.5%以上,而无光照情况下,识别率仍高于90.0%,并且图像分割信息完整、识别准确性高。