期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Hilbert k-cube的一个新上界
1
作者 杨仕椿 《广西科学》 CAS 2008年第4期348-349,共2页
给出Hk(n)的一个新上界,并证明Hk(n)<n1-1/2k-1+n1-1/2k-2,其中Hk(n)为数集{1,2,…,n}中不含有Hilbert k-cube集合的最大基数.
关键词 hilbert k-cube 最大基数 上界
在线阅读 下载PDF
The hyperspace of the regions below of all lattice-value continuous maps and its Hilbert cube compactification 被引量:8
2
作者 YANG Zhongqiang 《Science China Mathematics》 SCIE 2005年第4期469-484,共16页
Let L be a continuous semilattice. We use USC(X, L) to denote the family of all lower closed sets including X × {0} in the product space X × AL and ↓1 C(X,L) the one of the regions below of all continuous m... Let L be a continuous semilattice. We use USC(X, L) to denote the family of all lower closed sets including X × {0} in the product space X × AL and ↓1 C(X,L) the one of the regions below of all continuous maps from X to AL. USC(X, L) with the Vietoris topology is a topological space and ↓C(X, L) is its subspace. It will be proved that, if X is an infinite locally connected compactum and AL is an AR, then USC(X, L) is homeomorphic to [-1,1]ω. Furthermore, if L is the product of countably many intervals, then ↓ C(X, L) is homotopy dense in USC(X,L), that is, there exists a homotopy h : USC(X,L) × [0,1] →USC(X,L) such that h0 = idUSC(X,L) and ht(USC(X,L)) C↓C(X,L) for any t > 0. But ↓C(X, L) is not completely metrizable. 展开更多
关键词 hyperspaces hilbert cube HOMOTOPY dense continuous semilattice Vietoris topology G£-set.
原文传递
模糊紧空间在其一个自然的Hilbert方体紧化中的拓扑位置
3
作者 张丽丽 《模糊系统与数学》 CSCD 北大核心 2012年第4期59-66,共8页
以讨论模糊紧空间在其一个自然的Hilbert方体紧化中的拓扑位置为目的,利用Hilbert方体中伪边界的拓扑刻画,得出模糊紧空间是其Hilbert方体紧化的伪内部。
关键词 模糊紧集 HAUSDORFF度量 伪内部 hilbert方体
原文传递
同胚于Hilbert方体的一类连续函数空间
4
作者 刘淑芹 何宝珠 《广西师范学院学报(自然科学版)》 2008年第1期37-40,共4页
基于无穷局部连通的紧致度量空间X到Hilbert方体Q=[0,1]ω的连续函数族C(X,Q)作为乘积空间X×Q的闭子集组成的超空间Cld(X×Q)的子空间,讨论连续函数超空间C(X,Q)及其在Cld(X×Q)中的闭包C(X,Q)的拓扑结构,得到(C(X,Q),C(X,... 基于无穷局部连通的紧致度量空间X到Hilbert方体Q=[0,1]ω的连续函数族C(X,Q)作为乘积空间X×Q的闭子集组成的超空间Cld(X×Q)的子空间,讨论连续函数超空间C(X,Q)及其在Cld(X×Q)中的闭包C(X,Q)的拓扑结构,得到(C(X,Q),C(X,Q))对同胚于(Q,s). 展开更多
关键词 超空间 连续统 HAUSDORFF度量 hilbert方体
在线阅读 下载PDF
基于GPU加速的3D矢量场改进VolumeLIC绘制技术 被引量:8
5
作者 王松 王海洋 +1 位作者 吴亚东 吴斌 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第5期723-732,共10页
纹理绘制技术通过纹理线条和颜色变化能够细致且生动地表现2D矢量场的速度、方向以及数据相关性等特征信息,但扩展到3D矢量场空间时,由于3D矢量场本身的空间特性容易造成纹理单元之间产生严重的视线遮挡问题,影响研究人员对矢量场内部... 纹理绘制技术通过纹理线条和颜色变化能够细致且生动地表现2D矢量场的速度、方向以及数据相关性等特征信息,但扩展到3D矢量场空间时,由于3D矢量场本身的空间特性容易造成纹理单元之间产生严重的视线遮挡问题,影响研究人员对矢量场内部固有属性特征的观察和分析.针对此问题,提出一种基于GPU加速实现的稀疏噪声纹理生成的改进3D矢量场Volume LIC绘制技术.在噪声生成部分,基于泊松盘分布以避免噪声点间的相互遮挡,采用Hilbert空间填充线遍历减少生成噪声点的规律性和人工痕迹,并通过高斯滤波核滤除高频区域生成稀疏高斯噪声.整个算法采用GPU+GLSL硬件加速机制,在噪声纹理采样时,利用GPU顶点颜色线性插值功能和片元计算方法有效地加速LIC纹理生成过程,并将卷积噪声和矢量场数据作为纹理传入GPU;采用光线投射算法实现LIC纹理的3D绘制显示,并通过光线提前终止技术和空白空间跳跃技术有效提升绘制效率;同时提供多种有效的交互分析手段查看流场内部特征.实验结果表明,该方法生成的3D纹理图像清晰、绘制效率高,能够有效地缓解3D复杂矢量场卷积数据过多引起的遮挡与混乱现象,具备良好的可视化效果. 展开更多
关键词 稀疏噪声 泊松盘分布 hilbert空间填充线 高斯滤波 光线投射法
在线阅读 下载PDF
Lipschitz映射的下方图形(英文) 被引量:2
6
作者 张丽丽 杨忠强 《数学进展》 CSCD 北大核心 2007年第3期349-353,共5页
令(X, d)是紧的度量空间,用↓USC(X)和↓LIP(X)分别表示从X到I所有的上半连续映射和所有Lipschitz映射的下方图形的全体.本文证明如果X是一个无限的紧的度量空间,则(↓USC(X), ↓LIP(X))≈ (Q, B(Q)),其中B(Q)=Q/(-... 令(X, d)是紧的度量空间,用↓USC(X)和↓LIP(X)分别表示从X到I所有的上半连续映射和所有Lipschitz映射的下方图形的全体.本文证明如果X是一个无限的紧的度量空间,则(↓USC(X), ↓LIP(X))≈ (Q, B(Q)),其中B(Q)=Q/(-1,1)^ω是Hilbert立方体Q=[-1,1]^ω的伪边界. 展开更多
关键词 上半连续映射 LIPSCHITZ映射 hilbert立方体 伪边界
在线阅读 下载PDF
The Hyperspace of the Regions Below of Continuous Maps from the Converging Sequence 被引量:4
7
作者 杨忠强 范玲玲 《Northeastern Mathematical Journal》 CSCD 2006年第1期46-54,共9页
Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all conti... Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all continuous maps from S to I and ↓C0(S) = {↓f∈↓C(S) : f(0) = 0}. ↓USC(S) endowed with the Vietoris topology is a topological space. A pair of topological spaces (X, Y) means that X is a topological space and Y is its subspace. Two pairs of topological spaces (X, Y) and (A, B) are called pair-homeomorphic (≈) if there exists a homeomorphism h : X→A from X onto A such that h(Y) = B. It is proved that, (↓USC(S),↓C0(S)) ≈(Q, s) and (↓USC(S),↓C(S)/ ↓C0(S))≈(Q, c0), where Q = [-1,1]^ω is the Hilbert cube and s = (-1,1)^ω,c0= {(xn)∈Q : limn→∞= 0}. But we do not know what (↓USC(S),↓C(S))is. 展开更多
关键词 regions below upper semi-continuity the hilbert cube pseudo-interior strongly universal the converging sequence
在线阅读 下载PDF
B(H)上完全保立方幂零算子的可加映射 被引量:1
8
作者 路召飞 黄丽 殷雪剑 《纺织高校基础科学学报》 CAS 2011年第2期201-202,208,共3页
刻画了无限维复Hilbert空间上完全保立方幂零算子的可加映射.采用矩阵与算子理论的方法,证明了这样的映射是同构或(复情形)共轭同构.
关键词 hilbert空间 立方幂零算子 可加映射 完全保持问题 同构
在线阅读 下载PDF
On Non-Bi-Lipschitz Homogeneity of Some Hyperspaces
9
作者 Zhilang ZHANG Zhongqiang YANG 《Journal of Mathematical Research with Applications》 CSCD 2014年第3期371-378,共8页
A metric space (X, d) is called bi-Lipschitz homogeneous if for any points x, y ∈X, there exists a self-homeomorphism h of X such that both h and h-1 are Lipschitz and h(x) = y. Let 2(x,d) denote the family of ... A metric space (X, d) is called bi-Lipschitz homogeneous if for any points x, y ∈X, there exists a self-homeomorphism h of X such that both h and h-1 are Lipschitz and h(x) = y. Let 2(x,d) denote the family of all non-empty compact subsets of metric space (X, d) with the Hausdorff metric. In 1985, Hohti proved that 2([0,1],d) is not bi-Lipschitz homogeneous, where d is the standard metric on [0, 1]. We extend this result in two aspects. One is that 2([0,1],e ) is not bi-Lipschitz homogeneous for an admissible metric Q satisfying some conditions. Another is that 2(X,d) is not bi-Lipschitz homogeneous if (X, d) has a nonempty open subspace which is isometric to an open subspace of m-dimensional Euclidean space R^m. 展开更多
关键词 non-bi-Lipschitz homogeneity HYPERSPACE hilbert cube.
原文传递
关于一个无限维四元空间列的研究
10
作者 吴拿达 《韩山师范学院学报》 2012年第6期16-20,共5页
希尔伯特方体Q=[-1,1]∞和它的几个子空间s=(-1,1)∞,∑={(xn)}∈Q:sup|x n|<1,C0={(xn)∈∑:nli→m∞|x n|=0}都是常见的无限维拓扑空间.该文主要研究四元空间列(Q,s,Σ,c 0),给出它与相应三元空间列或空间对的关系的有关结论.
关键词 无限维空间 希尔伯特方体 四元空间列 三元空间列 空间对 同胚
在线阅读 下载PDF
连续函数超空间 被引量:1
11
作者 刘淑芹 杨忠强 《汕头大学学报(自然科学版)》 2004年第3期3-8,32,共7页
基于空间X到空间Y的连续函数族作为乘积空间X×Y的闭子集组成的超空间CL(X×Y)的子空间 ,在限制Y为Hilbert方体Q时 ,得到连续函数超空间C(X ,Q)同胚于Q的伪内部s;在限制X为单位闭区间I时 ,考虑连续函数超空间C(I,Y)在CL(I×... 基于空间X到空间Y的连续函数族作为乘积空间X×Y的闭子集组成的超空间CL(X×Y)的子空间 ,在限制Y为Hilbert方体Q时 ,得到连续函数超空间C(X ,Q)同胚于Q的伪内部s;在限制X为单位闭区间I时 ,考虑连续函数超空间C(I,Y)在CL(I×Y)中的闭包 ,得到其元素到Y的投影是连续统 ,且投影随I中的点连续变化 ,并举例说明了即使X为单位圆盘 ,上述第二个结论也不能成立 . 展开更多
关键词 连续函数 超空间 连续统 HAUSDORFF度量 Hi]bert方体 上半连续 无限维拓扑学
在线阅读 下载PDF
上半连续映射的下方图形
12
作者 祁玉龙 张丽丽 《西安工业大学学报》 CAS 2008年第2期193-195,共3页
令X是Hausdorff空间,I=[0,1]为单位区间,用↓USC(X)表示从X到I所有的上半连续映射的下方图形构成的集族.利用Torunczyk刻画定理研究了带有Fell拓扑的空间↓USC(X)的拓扑结构,证明了↓USC(X)同胚于Hilbert方体Q=[-1,1]ω当且仅当X为无限... 令X是Hausdorff空间,I=[0,1]为单位区间,用↓USC(X)表示从X到I所有的上半连续映射的下方图形构成的集族.利用Torunczyk刻画定理研究了带有Fell拓扑的空间↓USC(X)的拓扑结构,证明了↓USC(X)同胚于Hilbert方体Q=[-1,1]ω当且仅当X为无限的局部紧第二可数空间. 展开更多
关键词 上半连续映射 超空间 hilbert方体 Fell拓扑
在线阅读 下载PDF
分段线性连续函数的下方图形拓扑结构
13
作者 陈满春 黄若婷 +1 位作者 庄方敏 李婷爽 《韩山师范学院学报》 2015年第3期20-23,共4页
设S*={1/n:n∈N+}为一收敛数列.用K表示从区间(0,1]到[0,1]且分段点之集为S*的分段线性连续函数全体.USC表示单位闭区间到自身的所有上半连续函数全体.对任意f∈USC,↓f表示f的下方图形,即↓f={(x,t)|x∈I,0tf(x)}.对任意USC的子集A,令... 设S*={1/n:n∈N+}为一收敛数列.用K表示从区间(0,1]到[0,1]且分段点之集为S*的分段线性连续函数全体.USC表示单位闭区间到自身的所有上半连续函数全体.对任意f∈USC,↓f表示f的下方图形,即↓f={(x,t)|x∈I,0tf(x)}.对任意USC的子集A,令↓A={↓f|f∈A},对↓USC赋予Hausdorff度量拓扑,并对K中的每个函数补充其在0点的函数值为其上极限使K变为USC的子集,记为L.将证明↓L同胚于s=(0,1)∞,其中s为希尔伯特方体Q=[0,1]∞的子空间. 展开更多
关键词 分段线性函数 同胚 上半连续函数 HAUSDORFF度量 希尔伯特方体
在线阅读 下载PDF
M-连续格到Hilbert方体的嵌入 被引量:6
14
作者 徐晓泉 《数学学报(中文版)》 SCIE CSCD 北大核心 1995年第6期827-830,共4页
本文主要讨论M-连续格到Hilbert方体的嵌入问题.我们建立了M-连续格的次直积表示理论,推广并统一了Raney,Bruns,Lawson,Bandelt和Erne等人的相应工作.Renay与Bruns的经典方法是... 本文主要讨论M-连续格到Hilbert方体的嵌入问题.我们建立了M-连续格的次直积表示理论,推广并统一了Raney,Bruns,Lawson,Bandelt和Erne等人的相应工作.Renay与Bruns的经典方法是建立在对相应的弱辅助关系的极大完备链作深入分析之上的,富于技巧性,且有局限性.与之相比,本文所使用的方体则相当朴素而自然,但却能处理更为广泛的情形. 展开更多
关键词 M-连续格 次直积表示 希尔伯特方体 嵌入问题
原文传递
Hilbert Problem 15 and Ritt-Wu Method(Ⅰ) 被引量:1
15
作者 LI Banghe 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第1期47-61,共15页
Hilbert problem 15 requires to understand Schubert's book. In this book, there is a theorem in §23, about the relation of the tangent lines from a point and the singular points of cubed curves with cusp near ... Hilbert problem 15 requires to understand Schubert's book. In this book, there is a theorem in §23, about the relation of the tangent lines from a point and the singular points of cubed curves with cusp near a 3-multiple straight line, which was obtained by the so called main trunk numbers, while for these numbers, Schubert said that he obtained them by experiences. So essentially Schubert even did not give any hint for the proof of this theorem. In this paper, by using the concept of generic point in the framework of Van der Waerden and Weil on algebraic geometry, and realizing Ritt-Wu method on computer, the authors prove that this theorem of Schubert is completely right. 展开更多
关键词 cubed CURVES with CUSP hilbert PROBLEM 15 Ritt-Wu METHOD
原文传递
A topological position of the set of continuous maps in the set of upper semicontinuous maps 被引量:11
16
作者 YANG ZhongQiang WU NaDa 《Science China Mathematics》 SCIE 2009年第8期1815-1828,共14页
Let (X, ρ) be a metric space and ↓USCC(X) and ↓CC(X) be the families of the regions below all upper semi-continuous compact-supported maps and below all continuous compact-supported maps from X to I = [0,1], respec... Let (X, ρ) be a metric space and ↓USCC(X) and ↓CC(X) be the families of the regions below all upper semi-continuous compact-supported maps and below all continuous compact-supported maps from X to I = [0,1], respectively. With the Hausdorff-metric, they are topological spaces. In this paper, we prove that, if X is an infinite compact metric space with a dense set of isolated points, then (↓USCC(X), ↓CC(X)) ≈ (Q, c 0 ∪ (Q Σ)), i.e., there is a homeomorphism h:↓USCC(X) → Q such that h(↓CC(X)) = c 0 ∪ (Q Σ), where Q = [?1,1]ω, Σ = {(x n ) n∈? ∈ Q: sup|x n | < 1} and c 0 = {(x n ) n∈? ∈ Σ: lim n→+∞ x n = 0}. Combining this statement with a result in our previous paper, we have $$ ( \downarrow USCC(X), \downarrow CC(X)) \approx \left\{ \begin{gathered} (Q,c_0 \cup (Q\backslash \Sigma )), if the set of isolanted points is dense in X, \hfill \\ (Q,c_0 ),otherwise, \hfill \\ \end{gathered} \right. $$ if X is an infinite compact metric space. We also prove that, for a metric space X, (↓USCC(X), ↓CC(X)) ≈ (Σ, c 0) if and only if X is non-compact, locally compact, non-discrete and separable. 展开更多
关键词 hilbert cube strongly universal upper semi-continuous maps continuous maps compact-supported 54B20 54C35 57N20
原文传递
The Hyperspace of the Regions below Continuous Maps with the Fell Topology 被引量:4
17
作者 Zhong Qiang YANG Bao Can ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第1期57-66,共10页
For a Tychonoff space X, we use ↓USCF(X) and↓CF(X) to denote the families of the hypographs of all semi-continuous maps and of all continuous maps from X to I = [0, 1] with the subspace topologies of the hypersp... For a Tychonoff space X, we use ↓USCF(X) and↓CF(X) to denote the families of the hypographs of all semi-continuous maps and of all continuous maps from X to I = [0, 1] with the subspace topologies of the hyperspace Cldf(X × I) consisting of all non-empty closed sets in X × I endowed with the Fell topology. In this paper, we shall show that there exists a homeomorphism h: ↓USCF(X) → Q = [-1, 1]^∞ such that h(↓ CF(X)) : co : {(Xn) E Q | limn→ ∞ xn = O} if and only if X is a locally compact separable metrizable space and the set of isolated points is not dense in X. 展开更多
关键词 Fell topology HYPERSPACE upper semi-continuous hilbert cube
原文传递
A unified approximate reasoning theory suitable for both propositional calculus system L and predicate calculus system K 被引量:6
18
作者 WANGGuojun CHINK.S DANGC.Y. 《Science in China(Series F)》 2005年第1期1-14,共14页
The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as w... The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as well as syntactically, and a unified complete theorem is obtained. 展开更多
关键词 metric R0-algebra hilbert cube of type R0 metric Lindenbaum algebra of type R0 approximate reasoning complete theorem.
原文传递
Division and k-th root theorems for Q-manifolds
19
作者 Taras BANAKH Duan REPOV 《Science China Mathematics》 SCIE 2007年第3期313-324,共12页
We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property... We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-dimensional approximation property (cd-AP), which means that each map f:K→X of a compact polyhedron can be approximated by a map with the countable-dimensional image. As an application we prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold. If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X×[0,1] are Q-manifolds as well. We construct a countable familyχof spaces with DDP and cd-AP such that no space X∈χis homeomorphic to the Hilbert cube Q whereas the product X×Y of any different spaces X, Y∈χis homeomorphic to Q. We also show that no uncountable familyχwith such properties exists. 展开更多
关键词 hilbert cube Cantor cube Tychonov cube ANR infinite-dimensional manifold Disjoint Disk Property cell-like map 57N20 54F65 55N10 58B05 57N60
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部