As data becomes increasingly complex,measuring dependence among variables is of great interest.However,most existing measures of dependence are limited to the Euclidean setting and cannot effectively characterize the ...As data becomes increasingly complex,measuring dependence among variables is of great interest.However,most existing measures of dependence are limited to the Euclidean setting and cannot effectively characterize the complex relationships.In this paper,we propose a novel method for constructing independence tests for random elements in Hilbert spaces,which includes functional data as a special case.Our approach is using distance covariance of random projections to build a test statistic that is computationally efficient and exhibits strong power performance.We prove the equivalence between testing for independence expressed on the original and the projected covariates,bridging the gap between measures of testing independence in Euclidean spaces and Hilbert spaces.Implementation of the test involves calibration by permutation and combining several p-values from different projections using the false discovery rate method.Simulation studies and real data examples illustrate the finite sample properties of the proposed method under a variety of scenarios.展开更多
The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper con...The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper control conditions imposed on the coefficients and operators,we prove a new strong convergence result for solving variational inequalities with regard to pseudomonotone and Lipschitzian operators.Moreover,some numerical simulation results are given to show the rationality and validity of our algorithm.展开更多
In the paper, we study the stability of Hilbert space generalized frames under perturbations. We get some results that are in spirit close to classical results for discrete frames, due to OLE Christensen.
Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ...Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments.展开更多
In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the general...In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.展开更多
In this article, we prove that an into 1-Lipschitz mapping from the unit sphere of a Hilbert space to the unit sphere of an arbitrary normed space, which under some conditions, can be extended to be a linear isometry ...In this article, we prove that an into 1-Lipschitz mapping from the unit sphere of a Hilbert space to the unit sphere of an arbitrary normed space, which under some conditions, can be extended to be a linear isometry on the whole space.展开更多
Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semi...Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.展开更多
The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converge...The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.展开更多
Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator i...Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator is considered.Furthermore by using the familiar Riesz-Dunford integral,a linear operator on Hilbert space H is introduced.A new subclass of p-valent functions related to an operator on H is defined.Coefficient estimate,distortion bound and extreme points are obtained.The convolution-preserving property is also investigated.展开更多
Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and ...Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and covariance operator ∑ and set partial sums SN =∑K≤nXK,K,N∈Z+^d. Under some moment conditions, we obtain the precise asymptotics of a kind of weighted infinite series for partial sums SN as ε↓ by using the truncation and approximation methods. The results are related to the convergence rates of the law of the logarithm in Hilbert space, and they also extend the results of (Gut and Spataru, 2003).展开更多
In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost ...In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost spirallike mapping of typeβ and order α, almost starlikeness of order α, spirallikeness of type ofβ and starlikeness.展开更多
Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's res...Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's results on H∞ functional calculus of sectorial operators on Hilbert spaces to the case when the square functions are replaced by the area integral functions.展开更多
Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the mod...Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the model bias comes from a reproducing kernel Hilbert space. Two different design criteria are proposed by applying the minimax approach for estimating the parameters of the regression response and extrapolating the regression response to points outside of the design space. A simulated annealing algorithm is applied to construct the minimax designs. These minimax designs are compared with the classical D-optimal designs and all-bias extrapolation designs. Numerical results indicate that the simulated annealing algorithm is feasible and the minimax designs are robust against bias caused by model misspecification.展开更多
This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coh...This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.展开更多
Let H be a separable Hilbert space, BH(I), B(H) and K(H) the sets of all Bessel sequences {fi}i∈I in H, bounded linear operators on H and compact operators on H, respectively. Two kinds of multiplications and i...Let H be a separable Hilbert space, BH(I), B(H) and K(H) the sets of all Bessel sequences {fi}i∈I in H, bounded linear operators on H and compact operators on H, respectively. Two kinds of multiplications and involutions are introduced in light of two isometric linear isomorphisms αH: BH(I)→ B(l2),β : BH(I) → B(H), respectively, so that BH(I) becomes a unital C*-algebra under each kind of multiplication and involution. It is proved that the two C*-algebras (BH(I), o, #) and (BH(I), ., *) are *-isomorphic. It is also proved that the set FH (I) of all frames for H is a unital multiplicative semi-group and the set RH(I) of all Riesz bases for H is a self-adjoint multiplicative group, as well as the set KH (I) :=β-1 (K(H)) is the unique proper closed self-adjoint ideal of the C*-algebra BH (I).展开更多
This paper builds symmetrically general theories of rods and shells under mathematical frame of 'Hilbert Space', and successfully obtains the error estimate to the system of theory.
A system of generalized mixed equilibrium-like problems is introduced and the existence of its solutions is shown by using the auxiliary principle technique in Hilbert spaces.
We prove that, as in the finite dimensional case, the space of Bloch functions on the unit ball of a Hilbert space contains, under very mild conditions, any semi-Banach space of analytic functions invariant under auto...We prove that, as in the finite dimensional case, the space of Bloch functions on the unit ball of a Hilbert space contains, under very mild conditions, any semi-Banach space of analytic functions invariant under automorphisms. The multipliers for such Bloch space are characterized and some of their spectral properties are described.展开更多
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the s...The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.展开更多
In this paper,we consider the solvability of generalized variational inequalities involving multi-valued relaxed monotone operators in the framework of Hilbert spaces.Our results mainly improve the corresponding resul...In this paper,we consider the solvability of generalized variational inequalities involving multi-valued relaxed monotone operators in the framework of Hilbert spaces.Our results mainly improve the corresponding results announced by Verma[R U Verma,Generalized variational inequalities involving multivalued relaxed monotone operators,Appl Math Lett,1997,10:107-109]and many others.展开更多
基金Supported by the Grant of National Science Foundation of China(11971433)Zhejiang Gongshang University“Digital+”Disciplinary Construction Management Project(SZJ2022B004)+1 种基金Institute for International People-to-People Exchange in Artificial Intelligence and Advanced Manufacturing(CCIPERGZN202439)the Development Fund for Zhejiang College of Shanghai University of Finance and Economics(2023FZJJ15).
文摘As data becomes increasingly complex,measuring dependence among variables is of great interest.However,most existing measures of dependence are limited to the Euclidean setting and cannot effectively characterize the complex relationships.In this paper,we propose a novel method for constructing independence tests for random elements in Hilbert spaces,which includes functional data as a special case.Our approach is using distance covariance of random projections to build a test statistic that is computationally efficient and exhibits strong power performance.We prove the equivalence between testing for independence expressed on the original and the projected covariates,bridging the gap between measures of testing independence in Euclidean spaces and Hilbert spaces.Implementation of the test involves calibration by permutation and combining several p-values from different projections using the false discovery rate method.Simulation studies and real data examples illustrate the finite sample properties of the proposed method under a variety of scenarios.
文摘The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper control conditions imposed on the coefficients and operators,we prove a new strong convergence result for solving variational inequalities with regard to pseudomonotone and Lipschitzian operators.Moreover,some numerical simulation results are given to show the rationality and validity of our algorithm.
文摘In the paper, we study the stability of Hilbert space generalized frames under perturbations. We get some results that are in spirit close to classical results for discrete frames, due to OLE Christensen.
基金Supported by National Natural Science Foundation of China(Grant Nos.12072188,11632011,11702171,11572189,51121063)Shanghai Municipal Natural Science Foundation of China(Grant No.20ZR1425200).
文摘Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments.
文摘In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.
基金Supported by NSFC (10871101)the Doctoral Programme Foundation of Institution of Higher Education (20060055010)
文摘In this article, we prove that an into 1-Lipschitz mapping from the unit sphere of a Hilbert space to the unit sphere of an arbitrary normed space, which under some conditions, can be extended to be a linear isometry on the whole space.
基金supported by the National Natural Science Foundation of China(60674018)
文摘Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.
基金Supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology(2015JY0165,2011JYZ011)the Scientific Research Fund of Sichuan Provincial Education Department(14ZA0271)+2 种基金the Scientific Research Project of Yibin University(2013YY06)the Natural Science Foundation of China Medical University,Taiwanthe National Natural Science Foundation of China(11361070)
文摘The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.
文摘Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator is considered.Furthermore by using the familiar Riesz-Dunford integral,a linear operator on Hilbert space H is introduced.A new subclass of p-valent functions related to an operator on H is defined.Coefficient estimate,distortion bound and extreme points are obtained.The convolution-preserving property is also investigated.
基金Project (No. 10471126) supported by the National Natural Science Foundation of China
文摘Consider the positive d-dimensional lattice Z^d(d≥2) with partial ordering ≤, let {XK; K∈Z+^d} be i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with mean zero and covariance operator ∑ and set partial sums SN =∑K≤nXK,K,N∈Z+^d. Under some moment conditions, we obtain the precise asymptotics of a kind of weighted infinite series for partial sums SN as ε↓ by using the truncation and approximation methods. The results are related to the convergence rates of the law of the logarithm in Hilbert space, and they also extend the results of (Gut and Spataru, 2003).
基金Foundation item: Supported by the National Natural Science Foundation of China(10626015 10571044) Supported by the Fundamental Research of National Natural Science Foundation of Henan University(04ZDZR004)
文摘In this paper, we prove that the generalized Roper-Suffridge extension operator can be embeded in Loewner chains on the unit ball in Hibert spaces, and obtain the fact that the operator keeps the properties of almost spirallike mapping of typeβ and order α, almost starlikeness of order α, spirallikeness of type ofβ and starlikeness.
文摘Area integral functions are introduced for sectorial operators on Hilbert spaces. We establish the equivalence relationship between the square and area integral functions. This immediately extends McIntosh/Yagi's results on H∞ functional calculus of sectorial operators on Hilbert spaces to the case when the square functions are replaced by the area integral functions.
基金Supported by National Natural Science Foundation of China(11471216,11301332)E-Institutes of Shanghai Municipal Education Commission(E03004)+1 种基金Central Finance Project(YC-XK-13105)Shanghai Municipal Science and Technology Research Project(14DZ1201902)
文摘Consider the design problem for estimation and extrapolation in approximately linear regression models with possible misspecification. The design space is a discrete set consisting of finitely many points, and the model bias comes from a reproducing kernel Hilbert space. Two different design criteria are proposed by applying the minimax approach for estimating the parameters of the regression response and extrapolating the regression response to points outside of the design space. A simulated annealing algorithm is applied to construct the minimax designs. These minimax designs are compared with the classical D-optimal designs and all-bias extrapolation designs. Numerical results indicate that the simulated annealing algorithm is feasible and the minimax designs are robust against bias caused by model misspecification.
文摘This paper discusses the properties of amplitude-squared squeezing of the generalized odd-even coherent states of anharmonic oscillator in finite-dimensional Hilbert space. It demonstrates that the generalized odd coherent states do exhibit strong amplitude-squared squeezing effects in comparison with the generalized even coherent states.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1140135911371012+2 种基金11301318)China Postdoctoral Science Foundation(Grant No.2014M552405)the Natural Science Research Program of Shaanxi Province(Grant No.2014JQ1010)
文摘Let H be a separable Hilbert space, BH(I), B(H) and K(H) the sets of all Bessel sequences {fi}i∈I in H, bounded linear operators on H and compact operators on H, respectively. Two kinds of multiplications and involutions are introduced in light of two isometric linear isomorphisms αH: BH(I)→ B(l2),β : BH(I) → B(H), respectively, so that BH(I) becomes a unital C*-algebra under each kind of multiplication and involution. It is proved that the two C*-algebras (BH(I), o, #) and (BH(I), ., *) are *-isomorphic. It is also proved that the set FH (I) of all frames for H is a unital multiplicative semi-group and the set RH(I) of all Riesz bases for H is a self-adjoint multiplicative group, as well as the set KH (I) :=β-1 (K(H)) is the unique proper closed self-adjoint ideal of the C*-algebra BH (I).
文摘This paper builds symmetrically general theories of rods and shells under mathematical frame of 'Hilbert Space', and successfully obtains the error estimate to the system of theory.
文摘A system of generalized mixed equilibrium-like problems is introduced and the existence of its solutions is shown by using the auxiliary principle technique in Hilbert spaces.
基金partially supported by Spanish MINECO/FEDER PGC2018-094431-B-I00partially supported by the Academy of Finland Project 296718。
文摘We prove that, as in the finite dimensional case, the space of Bloch functions on the unit ball of a Hilbert space contains, under very mild conditions, any semi-Banach space of analytic functions invariant under automorphisms. The multipliers for such Bloch space are characterized and some of their spectral properties are described.
基金the NSFC(60473034)the Science Foundation of Zhejiang Province(Y604003).
文摘The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.
基金Supported by the Natural Science Foundation of Hebei Province(A2010001943) Supported by the Science Grant of Beijing Jiaotong University(2011YJS075)
文摘In this paper,we consider the solvability of generalized variational inequalities involving multi-valued relaxed monotone operators in the framework of Hilbert spaces.Our results mainly improve the corresponding results announced by Verma[R U Verma,Generalized variational inequalities involving multivalued relaxed monotone operators,Appl Math Lett,1997,10:107-109]and many others.