Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when...We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.展开更多
This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravit...This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation,which incorporates fourth-order dispersion.Under this framework,solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion,producing waveforms whose propagation speed,amplitude,and width depend largely on depth and initial disturbance.The resulting dynamics are comparatively smoother,with solitary waves maintaining coherent structures and shock waves displaying gradual transitions.When surface tension is incorporated,however,the dynamics become significantly richer.Surface tension introduces additional sixth-order dispersive terms into the governing equation,extending the classical model to the sixth-order Boussinesq equation.This higher-order dispersion modifies the balance between nonlinearity and dispersion,leading to sharper solitary wave profiles,altered shock structures,and a stronger sensitivity of wave stability to parametric variations.Surface tension effects also change the scaling laws for wave amplitude and velocity,producing conditions where solitary waves can narrow while maintaining large amplitudes,or where shock fronts steepen more rapidly compared to the tension-free case.These differences highlight how capillary forces,though often neglected in macroscopic wave studies,play a fundamental role in shaping dynamics at smaller scales or in systems with strong fluid–interface interactions.The analysis in this work is carried out using the Laplace-Adomian Decomposition Method(LADM),chosen for its efficiency and accuracy in solving high-order nonlinear partial differential equations.The numerical scheme successfully recovers both solitary and shock wave solutions under the sixth-order model,with error analysis confirming remarkably low numerical deviations.These results underscore the robustness of the method while demonstrating the profound contrast between shallow water wave dynamics without and with surface tension.展开更多
Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike sc...Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.展开更多
The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications ...The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.展开更多
We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We s...We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We show that all the horizontal symmetric waves for this equation must be traveling waves.This extends the previous results for the Camassa-Holm and Novikov equations.展开更多
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an...Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated...The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CIS...The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.展开更多
An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wav...An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wave to free-space propagating wave,they typically encounter the trade-off between extraction efficiency and wavefront accuracy.Recently,Prof.Lei Zhou’s group pioneered a strategy employing geometric metal meta-atoms with low polarization conversion ratio to overcome this bottleneck and experimentally demonstrated generation of pre-designed terahertz vector beams with efficiency exceeding 90%.This approach establishes a generic,high-performance framework for advanced on-chip meta-devices.展开更多
The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temper...The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.展开更多
In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface...In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.展开更多
Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among th...Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2).展开更多
Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary...Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.展开更多
Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established i...Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established in systems such as surface plasmon polaritons,surface elastic waves,and other evanescent modes.Here,we theoretically unveil an anomalous breakdown of spin-momentum locking in evanescent electromagnetic waves at a metalgyromagnetic interface.We show that the hybrid polarization of the field induces two successive reversals of transverse spin near the interface—directly violating the conventional locking between spin and momentum.As a result,identical chiral sources placed at different heights above the interface excite evanescent waves propagating in opposite directions,defying standard expectations.This discovery challenges the presumed universality of spin-momentum locking and opens new degrees of freedom for controlling wave propagation in photonic and plasmonic systems.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174166 and 12304144)the Fund from Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF013)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2024-22).
文摘We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.
文摘This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation,which incorporates fourth-order dispersion.Under this framework,solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion,producing waveforms whose propagation speed,amplitude,and width depend largely on depth and initial disturbance.The resulting dynamics are comparatively smoother,with solitary waves maintaining coherent structures and shock waves displaying gradual transitions.When surface tension is incorporated,however,the dynamics become significantly richer.Surface tension introduces additional sixth-order dispersive terms into the governing equation,extending the classical model to the sixth-order Boussinesq equation.This higher-order dispersion modifies the balance between nonlinearity and dispersion,leading to sharper solitary wave profiles,altered shock structures,and a stronger sensitivity of wave stability to parametric variations.Surface tension effects also change the scaling laws for wave amplitude and velocity,producing conditions where solitary waves can narrow while maintaining large amplitudes,or where shock fronts steepen more rapidly compared to the tension-free case.These differences highlight how capillary forces,though often neglected in macroscopic wave studies,play a fundamental role in shaping dynamics at smaller scales or in systems with strong fluid–interface interactions.The analysis in this work is carried out using the Laplace-Adomian Decomposition Method(LADM),chosen for its efficiency and accuracy in solving high-order nonlinear partial differential equations.The numerical scheme successfully recovers both solitary and shock wave solutions under the sixth-order model,with error analysis confirming remarkably low numerical deviations.These results underscore the robustness of the method while demonstrating the profound contrast between shallow water wave dynamics without and with surface tension.
基金supported by the National Nat-ural Science Foundation of China(No.42376174)the Natural Science Foundation of Shanghai(No.23ZR 1426900).
文摘Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.
基金supported by the National Natural Science Foundation of China(No.62371222)the Defense Industrial Technology Development Program(No.JCKY2023605C002)thePriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD202305).
文摘The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.
基金partially supported by the National Natural Science Foundation of China(Grant No.12201417)the Project funded by the China Postdoctoral Science Foundation(Grant No.2023M733173)partially supported by the National Natural Science Foundation of China(Grant No.12375006)。
文摘We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We show that all the horizontal symmetric waves for this equation must be traveling waves.This extends the previous results for the Camassa-Holm and Novikov equations.
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金supported by National Natural Science Foundation of China(Grant Nos:62122004 and 62274082)Beijing Natural Science Foundation(Grant No.Z210006)+5 种基金Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923,C1009-22G and T45-701/22-R)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040,JCYJ20220530115411025 and JCYJ20210324120409025)Research on mechanism of source/drain ohmic contact and the related Ga N p-FET(Grant No:2023A1515030034)Research on high-reliable Ga N power device and the related industrial power system(Grant No:HZQB-KCZYZ-2021052)supported by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SARthe assistance of SUSTech Core Research Facilities。
文摘Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金supported by the National Natural Science Foundation of China(Nos.42076238 and 42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.
基金support by the National Natural Science Foundation of China(Grant Nos.62325504,92250304,and 12174186)Dengfeng Project B of Nanjing University.
文摘An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wave to free-space propagating wave,they typically encounter the trade-off between extraction efficiency and wavefront accuracy.Recently,Prof.Lei Zhou’s group pioneered a strategy employing geometric metal meta-atoms with low polarization conversion ratio to overcome this bottleneck and experimentally demonstrated generation of pre-designed terahertz vector beams with efficiency exceeding 90%.This approach establishes a generic,high-performance framework for advanced on-chip meta-devices.
基金the financial support of National Key Research and Development Program of China(No.2022YFF0801701)National Natural Science Foundation of China(Grants 42375070)。
文摘The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.
基金supported by the National Key Research and Development Program of China (Grant No.2023YFC3206501 and 2022YFFO802600)the National Natural Science Foundation of China (Grant No.52369003,42262010 and 42374166)+6 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No.2023LHMS04011 and2022MS04009)the Application Technology Research and Development Project of Jungar Banner (Grant No.2023YY-18 and 2023YY-19)the First-class Academic Subjects Special Research Project of the Education Department of Inner Mongolia Autonomous Region (Grant No.YLXKZX-NND-010)the Inner Mongolia Autonomous Region Science and Technology Leading Talent Team (Grant No.2022LJRC0007)the Inner Mongolia Agricultural University Basic Research Project(BR22-12-04)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2313)the Basic Scientific Research Project of Institutions of Higher(Grant No.JY20230090)。
文摘In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.
基金supported by the National Nature Science Foundation of China[Grant Nos.92365204 and 12274298(Z.K.Liu)]the National Key R&D program of China[Grant No.2022YFA1604400/03(Z.K.Liu)]Zhangjiang Laboratory(Y.M.Zhang).The authors thank BL02B at the Shanghai Synchrotron Radiation Facility supported by the National Natural Science Foundation of China(Contract No.11227902).
文摘Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2).
文摘Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.
基金supported by the National Natural Science Foundation of China(Grant Nos.12434016 and 12474380)Science and Technology Project of Guangdong Province(Grant No.2020B0101-90001)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Natural Science Foundation of Guangdong Province(Grant No.2025A1515010714)。
文摘Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established in systems such as surface plasmon polaritons,surface elastic waves,and other evanescent modes.Here,we theoretically unveil an anomalous breakdown of spin-momentum locking in evanescent electromagnetic waves at a metalgyromagnetic interface.We show that the hybrid polarization of the field induces two successive reversals of transverse spin near the interface—directly violating the conventional locking between spin and momentum.As a result,identical chiral sources placed at different heights above the interface excite evanescent waves propagating in opposite directions,defying standard expectations.This discovery challenges the presumed universality of spin-momentum locking and opens new degrees of freedom for controlling wave propagation in photonic and plasmonic systems.