Mapping potential areas for finfish mariculture,particularly high-yield regions,is crucial for the proper utilization of marine space and global food security.Physiological models(growth performance models)that consid...Mapping potential areas for finfish mariculture,particularly high-yield regions,is crucial for the proper utilization of marine space and global food security.Physiological models(growth performance models)that consider the spatiotemporal heterogeneity of the marine environment are a potentially effective approach to achieving this goal.In the present study,we developed an integrated model that combines the thermal performance curve and spatiotemporal heterogeneity of the marine environment to map the global high-yield potential mariculture areas for 27 commercial finfish species.Our results showed that the current sizes of the potentially suitable areas(achieving 50% of the maximum growth rate for at least six months annually)and high-yield areas(achieving 75% of the maximum growth rate throughout a year)are(8.00±0.30)×10^(6) and(5.96±0.13)×10^(6) km^(2),respectively.Currently,the sizes of suitable and high-yield areas for warm-water mariculture fish are larger than those for other species.The growth potential of suitable mariculture areas is higher at mid and low latitudes than at high latitudes.Under the two shared socioeconomic pathway scenarios(SSP1-2.6 and SSP5-8.5),the sizes of both suitable and high-yield areas will increase by 2050.However,there is the potential for finfish mariculture to respond differently to climate change among species and regions,and cold-water fish may benefit from global warming.Overall,the global potential for suitable high-yield mariculture areas continues to increase,making finfish mariculture an important contributor to global food security.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
The Cloud Top Heavenly Palace,a majestic palace complex built with snow in the Changbai Mountains scenic area in Jilin Province,was officially illuminated and opened to the public on December 26,2025.This impressive i...The Cloud Top Heavenly Palace,a majestic palace complex built with snow in the Changbai Mountains scenic area in Jilin Province,was officially illuminated and opened to the public on December 26,2025.This impressive installation,with a main building measuring 20 meters high and 60 meters wide,faithfully recreates a classic scene from the best-selling Grave Robbers'Chronicles web novel series by Xu Lei,better known by his pseudonym Nanpai Sanshu.展开更多
The cultivation techniques for high-yield corn in a karst area of southwest Guizhou were elaborated in this research from the respects of choosing farmland, preparing farmland, picking good seeds, timely sowing, ratio...The cultivation techniques for high-yield corn in a karst area of southwest Guizhou were elaborated in this research from the respects of choosing farmland, preparing farmland, picking good seeds, timely sowing, rational close planting, im-proving the quality of planting, mulching, scientific fertilization, field management, timely harvest, etc. we hoped to provide a reference for the realization of high-effi-ciency corn planting in mountain areas.展开更多
In order to expand the production of Stevia rebaudiana( Bertoni) Hemsl.,the main points of high-yield cultivation techniques of a two-year-old stevia cultivar Shoutian No. 3 in Gannan area of Jiangxi Province were sum...In order to expand the production of Stevia rebaudiana( Bertoni) Hemsl.,the main points of high-yield cultivation techniques of a two-year-old stevia cultivar Shoutian No. 3 in Gannan area of Jiangxi Province were summarized: cutting and transplanting in early spring; fine management,applying more basic and additional fertilizers and retaining stubbles two times in summer,retaining roots for seeding in late autumn,and mulching membrane for safe overwintering in winter. This study will provide practical guidance for the planting of S. rebaudiana in Ganzhou,Jiangxi Province.展开更多
The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to inv...The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp...RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.展开更多
Global marine ecosystems are signiicantly endangered by microplastic pollution,leading to comprehensive investigations into its distribution and impacts on the health of ecosystem.This research employs the Alseamar Au...Global marine ecosystems are signiicantly endangered by microplastic pollution,leading to comprehensive investigations into its distribution and impacts on the health of ecosystem.This research employs the Alseamar Autonomous Underwater Vehicle(AUV)known as Glider to investigate microplastic concentrations within the Al Hoceima Marine Protected Area(MPA).Our objective is to identify spatial patterns that reveal pollution hotspots and furnish data for targeted conservation efforts and pollution prevention.We aim to identify regions with elevated microplastic concentrations by meticulously analyzing microplastic level graphs,with a speciic focus on temporal variations.The results reveal notable patterns,such as increased densities aroundishing harbors and near urban centers,potentially linked to anthropogenic activities.Additionally,we observe variations in pollution levels throughout different glider operation cycles,underscoring the importance of understanding the spatio‑temporal dynamics of microplastic distribution.Al Hoceima Marine protected areas exhibiting lower microplastic concentrations illustrate the eficacy of such zones in alleviating pollution impacts,thereby underscoring the signiicance of conservation efforts in safeguarding marine biodiversity and ecosystem resilience.Ultimately,our research enhances our comprehension of the pressures exerted by humans on marine environments and underscores the necessity of proactive conservation measures to shield marine ecosystems from the threats posed by microplastic pollution.展开更多
Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reserv...Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.展开更多
Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influenci...Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient.This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation(ETC),Mann-Kendall test,Theil-Sen estimator,ridge regression analysis,and other relevant methods.The following findings were obtained:(1)at the pixel scale,the long-term monthly SM data from the European Space Agency Climate Change Initiative(ESA CCI)exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error(RMSE)of 0.014 m^(3)/m^(3);(2)from 2000 to 2022,the study area experienced significant increase in annual average SM,with a rate of 0.408×10^(-3)m^(3)/(m^(3)•a).Moreover,higher altitudes showed a notable upward trend,with SM increasing rates at 0.210×10^(-3)m^(3)/(m^(3)•a)between 1000 and 2000 m,0.530×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m,and 0.760×10^(-3)m^(3)/(m^(3)•a)at altitudes above 4000 m;(3)land surface temperature(LST),root zone soil moisture(RSM)(10-40 cm depth),and normalized difference vegetation index(NDVI)were identified as the primary factors influencing annual average SM,which accounted for 34.37%,24.16%,and 22.64%relative contributions,respectively;and(4)absolute contribution of LST was more significant in subareas at higher altitudes,with average absolute contributions of 0.800×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m and 0.500×10^(-2) m^(3)/(m^(3)•a)above 4000 m.This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas,highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas,providing valuable insights for ecological research and water resource management in these areas.展开更多
In recent years,in response to the continuously rising demands of agricultural development,corn,as a key staple crop in China,plays an indispensable role in ensuring national food security.This study comprehensively e...In recent years,in response to the continuously rising demands of agricultural development,corn,as a key staple crop in China,plays an indispensable role in ensuring national food security.This study comprehensively evaluates the growth characteristics of various corn varieties and explores the practical benefits of high-yield cultivation strategies.The results show that a reasonable combination of corn varieties,scientific water and fertilizer management,and efficient pest and disease control measures can significantly increase corn yield.The findings of this study are crucial for accelerating the advancement of the corn industry in Nidang Town and its surrounding areas,while also providing valuable experience and technical support for achieving high-yield corn cultivation in similar regions.展开更多
In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. Thi...In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area.展开更多
Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area unde...Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.展开更多
While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(...While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(Corylus avellana L.),growing in multi-stemmed shrub form.We measured the size and harvested the biomass of 30 European hazel shrubs,drying and weighing their woody parts and leaves separately.AGB(dry mass)and leaf area models were established using a range of predictors,such as the upper height of the shrub,number of shoots per shrub,canopy projection area,stem base diameter of the thickest stem,and the sum of cross-sectional areas of all stems at the stem base.The latter was the best predictor of AGB,but the most practically useful variables,defined as relatively easy to measure by terrestrial or aerial approaches,were the upper height of the shrub and the canopy projection area.The leaf biomass to AGB ratio decreased with the shrub's height.Specific leaf area of shaded leaves increases with shrub height,but that of leaves at the top of the canopy does not change significantly.Given that the upper shrub height and crown projection of European hazel can be estimated using remote sensing approaches,especially UAV and LIDAR,these two variables appear the most promising for effective measurement of AGB in hazel.展开更多
Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With ...Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With a waterfall of 7 stages,it seems to be one beautiful site,a big resource for hydroelectricity generation.Besides,there are some natural landscapes and human resource for many forms;this is a conversing place of many peoples;therefore,we have a strong potential to develop the tourism.It is a wild area,everyone plants a little;therefore,here,it has not vegetables.The soil and the efficiency of the trees do not care.Here,we examined the heavy metals on the tomatoes and we studied fertilizers,and we want to improve the soil,to serve the product for the people better.展开更多
The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development...The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development.However,there is a paucity of knowledge on this cutting-edge topic.Given the extensive and rapid urbanization in the United States(U.S.)over the past two centuries,accurately measuring this gap between UAS and UAC is of critical importance for advancing future sustainable urban development,as well as having significant global implications.This study finds that although the 740 U.S.cities have a large UAC in 2100,these cities will encom pass a significant gap from UAC to UAS(approximately 165,000 km2),accounting for 30%UAC at that time.The study also reveals the spatio-temporal heterogeneity of the gap.The gap initially increases before reaching a inflection point in 2090,and it disparates greatly from−100%to 240%at city level.While cities in the Northwestern U.S.maintain UAC that exceeds UAS from 2020 to 2100,cities in other regions shift from UAC that exceeds UAS to UAC that falls short of UAS.Filling the gap without additional urban growth planning could lead to a reduction of crop production ranging from 0.3%to 3%and a 0.68%loss of biomass.Hence,dynamic and forward-looking urban planning is essential for addressing the challenges of sustainable development posed by urbanization,both within the U.S.and globally.展开更多
The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attit...The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attitude,motivation,and behavior related to the construction of family toilets in coastal areas.The study was conducted in Pangkep and Maros Regencies.Atotal of 50 heads of families were selected as participants using the purposive sampling method.25 participants became the experimental group and 25 people became the control group.The research variables included knowledge,attitudes,motivation,and behavior of the community in building family toilets before and after the experiment.Data collection through tests,questionnaires,and observations to each participant.The research instruments were knowledge tests,questionnaires,and observations.Data analysis used descriptive and inferential statistical analysis,with the t-test.The results of the study showed that based on the experiment,knowledge had a significant effect with a correlation coefficient of 0.94,attitudes had an effect of 0.91,motivation was 0.756,and behavior was 0.865.It can be concluded that the construction of family toilets in the coastal areas of Pangkep and Maros Regencies,before the experiment,the knowledge,attitudes,motivation,and behavior of the community were in the low category,and after the experiment increased significantly to the high category. In addition, the results of the analysis showed that the experiment had a significant effect on increasing theknowledge, attitudes, motivation, and behavior of the community towards the construction of family toilets in coastal areas.展开更多
Resilience,both as a conceptual perspective and an analytical framework,has increasingly garnered interest for its utility in examining the dynamic interactions between human societies and natural ecosystems.This appr...Resilience,both as a conceptual perspective and an analytical framework,has increasingly garnered interest for its utility in examining the dynamic interactions between human societies and natural ecosystems.This approach has emerged as a pivotal tool for exploring human-land relationships,spurring notable developments in corresponding models and methodologies.Mining areas,characterized by intense human activity disturbance,serve as typical environments for the application of social and ecological resilience.This paper delineates the core concepts,research framework,and assessment methods of social and ecological resilience in mining area(SERMA),and provide a comprehensive overview of the principal applications,limitations,proposed enhancements,and future development of SERMA from conceptual,theoretical,and practical standpoints.SERMA studies encompassing various domains,including assessment,mechanism,dynamic change,prediction,determinants,and management guidance.Nonetheless,the current research on SERMA confronts several challenges.Firstly,the absence of a standardized framework for evaluating resilience studies using comprehensive indicators makes it challenging to compare them.Secondly,there is a paucity of large-scale and long-term SERMA studies.Thirdly,insufcient analysis of the mechanisms such as resilience thresholds and regime shift,and corresponding empirical research.The study of SERMA involves theory of resilience,a critical examination of mining and reclamation processes,as well as related ecological and socio-economic processes.Future advances in resilience and social-ecological system(SES)research,such as the quantitative study of resilience mechanisms,are expected to gradually be applied to mining systems.展开更多
基金supported by the National Natural Science Founda-tion of China(42025604)the Fundamental Research Funds for the Central Universities of the Ocean University of China.
文摘Mapping potential areas for finfish mariculture,particularly high-yield regions,is crucial for the proper utilization of marine space and global food security.Physiological models(growth performance models)that consider the spatiotemporal heterogeneity of the marine environment are a potentially effective approach to achieving this goal.In the present study,we developed an integrated model that combines the thermal performance curve and spatiotemporal heterogeneity of the marine environment to map the global high-yield potential mariculture areas for 27 commercial finfish species.Our results showed that the current sizes of the potentially suitable areas(achieving 50% of the maximum growth rate for at least six months annually)and high-yield areas(achieving 75% of the maximum growth rate throughout a year)are(8.00±0.30)×10^(6) and(5.96±0.13)×10^(6) km^(2),respectively.Currently,the sizes of suitable and high-yield areas for warm-water mariculture fish are larger than those for other species.The growth potential of suitable mariculture areas is higher at mid and low latitudes than at high latitudes.Under the two shared socioeconomic pathway scenarios(SSP1-2.6 and SSP5-8.5),the sizes of both suitable and high-yield areas will increase by 2050.However,there is the potential for finfish mariculture to respond differently to climate change among species and regions,and cold-water fish may benefit from global warming.Overall,the global potential for suitable high-yield mariculture areas continues to increase,making finfish mariculture an important contributor to global food security.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
文摘The Cloud Top Heavenly Palace,a majestic palace complex built with snow in the Changbai Mountains scenic area in Jilin Province,was officially illuminated and opened to the public on December 26,2025.This impressive installation,with a main building measuring 20 meters high and 60 meters wide,faithfully recreates a classic scene from the best-selling Grave Robbers'Chronicles web novel series by Xu Lei,better known by his pseudonym Nanpai Sanshu.
文摘The cultivation techniques for high-yield corn in a karst area of southwest Guizhou were elaborated in this research from the respects of choosing farmland, preparing farmland, picking good seeds, timely sowing, rational close planting, im-proving the quality of planting, mulching, scientific fertilization, field management, timely harvest, etc. we hoped to provide a reference for the realization of high-effi-ciency corn planting in mountain areas.
基金Supported by Science and Technology Project of Education Department of Jiangxi Province(GJJ161243)"11531" Project of Nanchang Normal University
文摘In order to expand the production of Stevia rebaudiana( Bertoni) Hemsl.,the main points of high-yield cultivation techniques of a two-year-old stevia cultivar Shoutian No. 3 in Gannan area of Jiangxi Province were summarized: cutting and transplanting in early spring; fine management,applying more basic and additional fertilizers and retaining stubbles two times in summer,retaining roots for seeding in late autumn,and mulching membrane for safe overwintering in winter. This study will provide practical guidance for the planting of S. rebaudiana in Ganzhou,Jiangxi Province.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.41931293)the National Natural Science Foundation of China(Grant No.42271275).
文摘The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.
基金National Natural Science Foundation of china(Grant No.12402468)。
文摘RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.
文摘Global marine ecosystems are signiicantly endangered by microplastic pollution,leading to comprehensive investigations into its distribution and impacts on the health of ecosystem.This research employs the Alseamar Autonomous Underwater Vehicle(AUV)known as Glider to investigate microplastic concentrations within the Al Hoceima Marine Protected Area(MPA).Our objective is to identify spatial patterns that reveal pollution hotspots and furnish data for targeted conservation efforts and pollution prevention.We aim to identify regions with elevated microplastic concentrations by meticulously analyzing microplastic level graphs,with a speciic focus on temporal variations.The results reveal notable patterns,such as increased densities aroundishing harbors and near urban centers,potentially linked to anthropogenic activities.Additionally,we observe variations in pollution levels throughout different glider operation cycles,underscoring the importance of understanding the spatio‑temporal dynamics of microplastic distribution.Al Hoceima Marine protected areas exhibiting lower microplastic concentrations illustrate the eficacy of such zones in alleviating pollution impacts,thereby underscoring the signiicance of conservation efforts in safeguarding marine biodiversity and ecosystem resilience.Ultimately,our research enhances our comprehension of the pressures exerted by humans on marine environments and underscores the necessity of proactive conservation measures to shield marine ecosystems from the threats posed by microplastic pollution.
基金supported by the Innovation Fund of Nanjing Institute of Environmental Science,Ministry of Ecology and Environment,China(No.ZX2023QT003)the National Natural Science Foundation of China(No.22306130)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB789)the Ecological Environment Research Project of Jiangsu Province,China(No.2022014).
文摘Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.
基金supported by the Natural Science Foundation of Henan Province(252300421290)the National Natural Science Foundation of China(41771438)+1 种基金the Program for Innovative Research Team(in Science and Technology)of Henan University(22IRTSTHN010)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(HNYJS2020JD14).
文摘Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient.This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation(ETC),Mann-Kendall test,Theil-Sen estimator,ridge regression analysis,and other relevant methods.The following findings were obtained:(1)at the pixel scale,the long-term monthly SM data from the European Space Agency Climate Change Initiative(ESA CCI)exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error(RMSE)of 0.014 m^(3)/m^(3);(2)from 2000 to 2022,the study area experienced significant increase in annual average SM,with a rate of 0.408×10^(-3)m^(3)/(m^(3)•a).Moreover,higher altitudes showed a notable upward trend,with SM increasing rates at 0.210×10^(-3)m^(3)/(m^(3)•a)between 1000 and 2000 m,0.530×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m,and 0.760×10^(-3)m^(3)/(m^(3)•a)at altitudes above 4000 m;(3)land surface temperature(LST),root zone soil moisture(RSM)(10-40 cm depth),and normalized difference vegetation index(NDVI)were identified as the primary factors influencing annual average SM,which accounted for 34.37%,24.16%,and 22.64%relative contributions,respectively;and(4)absolute contribution of LST was more significant in subareas at higher altitudes,with average absolute contributions of 0.800×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m and 0.500×10^(-2) m^(3)/(m^(3)•a)above 4000 m.This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas,highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas,providing valuable insights for ecological research and water resource management in these areas.
文摘In recent years,in response to the continuously rising demands of agricultural development,corn,as a key staple crop in China,plays an indispensable role in ensuring national food security.This study comprehensively evaluates the growth characteristics of various corn varieties and explores the practical benefits of high-yield cultivation strategies.The results show that a reasonable combination of corn varieties,scientific water and fertilizer management,and efficient pest and disease control measures can significantly increase corn yield.The findings of this study are crucial for accelerating the advancement of the corn industry in Nidang Town and its surrounding areas,while also providing valuable experience and technical support for achieving high-yield corn cultivation in similar regions.
文摘In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area.
基金supported by the Horizon Europe Framework Programme(HORIZON),call Teaming for Excellence(HORIZONWIDERA-2022-ACCESS-01-two-stage)-Creation of the Centre of Excellence in Smart Forestry“Forest 4.0”No.101059985″This research was cofunded by FOREST 4.0-“Ekscelencijos centras tvariai miško bioekonomikai vystyti”(Nr.10-042-P-0002).
文摘Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.
基金funded by grants EVA4.0 No.Z.02.1.01/0.0/0.0/16_019/0000803 and ITMS2014+313011W580s provided by EU OP RDEin CZ and SKprojects APVV-18-0086,APVV-19-0387,APVV-20-0168,APVV-20-0215 and APVV-22-0056 from the Slovak Research and Development Agencysupport from the European Research Executive Agency for ReForest,Grant Agreement Nr:101060635
文摘While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(Corylus avellana L.),growing in multi-stemmed shrub form.We measured the size and harvested the biomass of 30 European hazel shrubs,drying and weighing their woody parts and leaves separately.AGB(dry mass)and leaf area models were established using a range of predictors,such as the upper height of the shrub,number of shoots per shrub,canopy projection area,stem base diameter of the thickest stem,and the sum of cross-sectional areas of all stems at the stem base.The latter was the best predictor of AGB,but the most practically useful variables,defined as relatively easy to measure by terrestrial or aerial approaches,were the upper height of the shrub and the canopy projection area.The leaf biomass to AGB ratio decreased with the shrub's height.Specific leaf area of shaded leaves increases with shrub height,but that of leaves at the top of the canopy does not change significantly.Given that the upper shrub height and crown projection of European hazel can be estimated using remote sensing approaches,especially UAV and LIDAR,these two variables appear the most promising for effective measurement of AGB in hazel.
文摘Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With a waterfall of 7 stages,it seems to be one beautiful site,a big resource for hydroelectricity generation.Besides,there are some natural landscapes and human resource for many forms;this is a conversing place of many peoples;therefore,we have a strong potential to develop the tourism.It is a wild area,everyone plants a little;therefore,here,it has not vegetables.The soil and the efficiency of the trees do not care.Here,we examined the heavy metals on the tomatoes and we studied fertilizers,and we want to improve the soil,to serve the product for the people better.
基金supported by the National Natural Science Foun-dation of China(Grants No.42330103,42271469)the Ningbo Science and Technology Bureau(Grant No.2022Z081).
文摘The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development.However,there is a paucity of knowledge on this cutting-edge topic.Given the extensive and rapid urbanization in the United States(U.S.)over the past two centuries,accurately measuring this gap between UAS and UAC is of critical importance for advancing future sustainable urban development,as well as having significant global implications.This study finds that although the 740 U.S.cities have a large UAC in 2100,these cities will encom pass a significant gap from UAC to UAS(approximately 165,000 km2),accounting for 30%UAC at that time.The study also reveals the spatio-temporal heterogeneity of the gap.The gap initially increases before reaching a inflection point in 2090,and it disparates greatly from−100%to 240%at city level.While cities in the Northwestern U.S.maintain UAC that exceeds UAS from 2020 to 2100,cities in other regions shift from UAC that exceeds UAS to UAC that falls short of UAS.Filling the gap without additional urban growth planning could lead to a reduction of crop production ranging from 0.3%to 3%and a 0.68%loss of biomass.Hence,dynamic and forward-looking urban planning is essential for addressing the challenges of sustainable development posed by urbanization,both within the U.S.and globally.
文摘The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attitude,motivation,and behavior related to the construction of family toilets in coastal areas.The study was conducted in Pangkep and Maros Regencies.Atotal of 50 heads of families were selected as participants using the purposive sampling method.25 participants became the experimental group and 25 people became the control group.The research variables included knowledge,attitudes,motivation,and behavior of the community in building family toilets before and after the experiment.Data collection through tests,questionnaires,and observations to each participant.The research instruments were knowledge tests,questionnaires,and observations.Data analysis used descriptive and inferential statistical analysis,with the t-test.The results of the study showed that based on the experiment,knowledge had a significant effect with a correlation coefficient of 0.94,attitudes had an effect of 0.91,motivation was 0.756,and behavior was 0.865.It can be concluded that the construction of family toilets in the coastal areas of Pangkep and Maros Regencies,before the experiment,the knowledge,attitudes,motivation,and behavior of the community were in the low category,and after the experiment increased significantly to the high category. In addition, the results of the analysis showed that the experiment had a significant effect on increasing theknowledge, attitudes, motivation, and behavior of the community towards the construction of family toilets in coastal areas.
基金supported by the National Key Research and Development Program(2023YFE0122300).
文摘Resilience,both as a conceptual perspective and an analytical framework,has increasingly garnered interest for its utility in examining the dynamic interactions between human societies and natural ecosystems.This approach has emerged as a pivotal tool for exploring human-land relationships,spurring notable developments in corresponding models and methodologies.Mining areas,characterized by intense human activity disturbance,serve as typical environments for the application of social and ecological resilience.This paper delineates the core concepts,research framework,and assessment methods of social and ecological resilience in mining area(SERMA),and provide a comprehensive overview of the principal applications,limitations,proposed enhancements,and future development of SERMA from conceptual,theoretical,and practical standpoints.SERMA studies encompassing various domains,including assessment,mechanism,dynamic change,prediction,determinants,and management guidance.Nonetheless,the current research on SERMA confronts several challenges.Firstly,the absence of a standardized framework for evaluating resilience studies using comprehensive indicators makes it challenging to compare them.Secondly,there is a paucity of large-scale and long-term SERMA studies.Thirdly,insufcient analysis of the mechanisms such as resilience thresholds and regime shift,and corresponding empirical research.The study of SERMA involves theory of resilience,a critical examination of mining and reclamation processes,as well as related ecological and socio-economic processes.Future advances in resilience and social-ecological system(SES)research,such as the quantitative study of resilience mechanisms,are expected to gradually be applied to mining systems.