Metallographic microscopy,scanning electron microscopy and TiN growth thermodynamic and kinetic equations were used to investigate the morphology,quantity,and size of TiN in the center of high-titanium high-strength s...Metallographic microscopy,scanning electron microscopy and TiN growth thermodynamic and kinetic equations were used to investigate the morphology,quantity,and size of TiN in the center of high-titanium high-strength steels under different solidification cooling rates.The results showed that TiN in the center of the experimental steels mainly existed in three forms:single,composite(Al2O3-TiN),and multi-particle aggregation.TiN began precipitating at around 1497℃(solidification fraction of 0.74).From the end of melting to solidification for 180 s,the cooling rates in the center of the experimental steels for furnace cooling,air cooling,refractory mold cooling,and cast iron mold cooling tended to stabilize at 0.17,0.93,1.65,and 2.15℃/s,respectively.The size of TiN in the center of the experimental steel cooled using furnace cooling was mainly concentrated in the 5-15 pm range.In contrast,the size of TiN in the center of the experimental steels cooled using air cooling,refractory mold cooling,and cast iron mold cooling were mainly concentrated in the 1-5 pm range.In addition,their density of TiN in the center of the experimental steels is signif-icantly higher than that of the furnace-cooled experimental steel.Thermodynamic and kinetic precipitation models of TiN established predicted the growth size of TiN in a high-titanium high-strength steel when the solidification cooling rates are not below 0.93℃/s.展开更多
A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of...A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.展开更多
基金supported by Baoshan Iron and Steel Co.,Ltd. (Grant No.RH2100003354).
文摘Metallographic microscopy,scanning electron microscopy and TiN growth thermodynamic and kinetic equations were used to investigate the morphology,quantity,and size of TiN in the center of high-titanium high-strength steels under different solidification cooling rates.The results showed that TiN in the center of the experimental steels mainly existed in three forms:single,composite(Al2O3-TiN),and multi-particle aggregation.TiN began precipitating at around 1497℃(solidification fraction of 0.74).From the end of melting to solidification for 180 s,the cooling rates in the center of the experimental steels for furnace cooling,air cooling,refractory mold cooling,and cast iron mold cooling tended to stabilize at 0.17,0.93,1.65,and 2.15℃/s,respectively.The size of TiN in the center of the experimental steel cooled using furnace cooling was mainly concentrated in the 5-15 pm range.In contrast,the size of TiN in the center of the experimental steels cooled using air cooling,refractory mold cooling,and cast iron mold cooling were mainly concentrated in the 1-5 pm range.In addition,their density of TiN in the center of the experimental steels is signif-icantly higher than that of the furnace-cooled experimental steel.Thermodynamic and kinetic precipitation models of TiN established predicted the growth size of TiN in a high-titanium high-strength steel when the solidification cooling rates are not below 0.93℃/s.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.