Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
The traditional trial-and-error method for designing refractory multi-principal element alloys(RMPEAs)is inefficient due to a vast compositional design space and high experimental costs.To surmount this challenge,the ...The traditional trial-and-error method for designing refractory multi-principal element alloys(RMPEAs)is inefficient due to a vast compositional design space and high experimental costs.To surmount this challenge,the data-driven material design based on machine learning(ML)has emerged as a critical tool for accelerating materials design.However,the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs.High-throughput(HTP)calculations have enabled the creation of such datasets.This study addresses these challenges by developing a data-driven framework for predicting the elastic properties of RMPEAs,integrating HTP calculations with ML.A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method.A novel stacking ensemble regression algorithm combining multilayer perceptron(MLP)and gradient boosting decision tree(GBDT)was developed,which achieved 92.9%accuracy in predicting the elastic properties of Ti-V-Nb-Ta alloys.Verification experiments confirmed the ML model's accuracy and robustness.This integration of HTP calculations and ML provides a costeffective,efficient,and precise alloy design strategy,advancing RMPEAs development.展开更多
The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter per...The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter persistent dendrite growth and parasitic reactions,driven by the inhomogeneous charge distribution and water-dominated environment within the EDL.Compounding this,classical EDL theory,rooted in meanfield approximations,further fails to resolve molecular-scale interfacial dynamics under battery-operating conditions,limiting mechanistic insights.Herein,we established a multiscale theoretical calculation framework from single molecular characteristics to interfacial ion distribution,revealing the EDL’s structure and interactions between different ions and molecules,which helps us understand the parasitic processes in depth.Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helmholtz plane drives severe hydrogen evolution and by-product formation.Guided by these insights,we engineered a“water-poor and anion-expelled”EDL using 4,1’,6’-trichlorogalactosucrose(TGS)as an electrolyte additive.As a result,Zn||Zn symmetric cells with TGS exhibited stable cycling for over 4700 h under a current density of 1 mA cm^(−2),while NaV_(3)O_(8)·1.5H_(2)O-based full cells kept 90.4%of the initial specific capacity after 800 cycles at 5 A g^(−1).This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance ARZB design through integrated theory-experiment approaches.展开更多
Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spi...Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spin Hall conductivity(SHC)of antiperovskite compounds with the composition ZXM3,where Z is a nonmetal,X is a metal,and M is a platinum group metal.From an initial database over 4500 structures,we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500(ℏ/e)(Ω^(⁻1)cm^(⁻1)).We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level.In addition,SHCs can be regulated through proper doping of electrons or holes.The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.展开更多
Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable car...Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.展开更多
Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particu...Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.展开更多
Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elast...Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elastic moduli of γ-Ni. We used machine learning to theoretically predict the relationship between alloying concentration and mechanical properties, giving the binding energy between the two elements. We found that the ternary alloying elements strengthened the 7 phase in the order of Re 〉 Ir 〉 W 〉 Ru 〉 Cr 〉 Mo 〉 Pt 〉 Ta 〉 Co. There is a quadratic parabolic relationship between the number of d shell electrons in the alloying element and the bulk modulus, and the maximum bulk modulus appears when the d shell is half full. We found a linear relationship between bulk modulus and alloying concentration over a certain alloying range. Using linear regression, we found the linear fit concentration coefficient of 29 elements. Using machine learning to theoretically predict the bulk modulus and lattice constants of Ni32XY, we predicted values close to the calculated results, with a regression parameter of R2 = 0.99626. Compared with pure Ni, the alloyed Ni has higher bulk modulus B, G, E, Cll, and C44, but equal Cl2. The alloying strengthening in some of these systems is closely tied to the binding of elements, indicating that the binding energy of the alloy is a way to assess its elastic properties.展开更多
Recent technical progress in the industry has led to an urgent requirement on new materials with enhanced multi-properties.To meet this multi-property requirement,the materials consisting of three and more elements ha...Recent technical progress in the industry has led to an urgent requirement on new materials with enhanced multi-properties.To meet this multi-property requirement,the materials consisting of three and more elements have attracted increasing attention.However,facing to the nearly unknown huge multi-component materials system,the traditional trial and error method cannot provide sufficient data efficiently.Therefore,an efficient material innovation strategy is significant.The first-principles calculation based on the density functional theory is a powerful tool for both the accurate prediction of material properties and the identification of its underlying thermodynamics and dynamics.At the same time,the advances of computational methods and computer calculation abilities that are orders of magnitude faster than before make the high throughput first-principles calculations popular.At present,the simulation-assisted material design has become a main branch in the material research field and a great many successes have been made.In this article,the advances of the high throughput first-principles calculations are reviewed to show the achievements of the first-principles calculations and guide the future directions of its applications in ceramics.展开更多
Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.A...Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.All alloying elements in these calculations were thermodynamically favorable,which indicated that these elements could be dissolved inα-Ti alloys.Ti_(35)Os had the highest elastic modulus as compared to those of other dilute Tibased solid solutions.Au,Co,and Pt were found to be promising candidates for improving the ductilities ofα-Ti solid solution alloys.Solid solution strengthening was analyzed using Cottrell's and Labush's models.Based on the solid solubility,Ir,Rh,Ni,and Pt were found to possess the best solid solution hardening effects in the following order:Ir>Rh>Ni>Pt.The bonding state between Ti and the impurity atom was visually characterized owing to the difference between their charge densities.By integrating the calculations of mean bond length and mean population,the results showed that Ti-Os had the largest mean population and degree of delocalization of the electron cloud around the solute atom,implying ionic characteristics of Os and Ti.Furthermore,after analyzing the alloying elements of each group,we found thatⅧ-group elements(Ru,Rh,Pd,Os,Ir,Pt)had good potentials for improving the comprehensive mechanical properties of Ti alloys.展开更多
Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p ...Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.展开更多
Searching for new materials with extra low thermal conductivities is significant in numerous fields like thermal barrier coatings and thermoelectric devices.Traditional multiple-component design has successfully reduc...Searching for new materials with extra low thermal conductivities is significant in numerous fields like thermal barrier coatings and thermoelectric devices.Traditional multiple-component design has successfully reduced the thermal conductivity,but it also dramatically increases the complexity of manufactural technologies and the risk of material failures.In this work,a specific category known as ABO_(4) scheelites that with both simple crystal structure and the structural signature of the low lattice thermal conductivity is explored.High-throughput calculations are employed to screen for the materials with the targeted performance by multi-dimensional mechanical/thermal property criteria and a database of 46 stable scheelites is constructed.Seven scheelites with both ultra-low thermal conductivities(<1.2 W/(m∙K))and quasi-ductility are predicted to be novel thermal insulation materials.Low thermal conductivities prefer the scheelites with large valence disparity between“A”and“B”cations and/or small ionic radius ratio.The adopted strategy starting from the structural fingerprint and the data-driven material selection is expected to be a reference of future structural and functional ceramics design.展开更多
As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL pow...As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.展开更多
The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculati...The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.展开更多
The vacuum reactive wetting and brazing of Er_(2)Si_(2)O_(7)/MoSi_(2) coatings were investigated using a (CoFeNiCrMn)_(88)Nb_(12) high-entropy alloy (HEA) brazing filler. The microstructural evolution and wettability ...The vacuum reactive wetting and brazing of Er_(2)Si_(2)O_(7)/MoSi_(2) coatings were investigated using a (CoFeNiCrMn)_(88)Nb_(12) high-entropy alloy (HEA) brazing filler. The microstructural evolution and wettability of the HEA filler were analyzed, with particular attention to the surface energy, interfacial stability, and electronic properties of the HEA filler/rare earth silicate coating system, as determined by density functional theory (DFT). As Nb diffused into the interface and the ErNbO_(4) phase formed, the wetting angle gradually decreased to 23.12° The effective wetting and spreading of the HEA brazing filler on the rare earth silicate coating surface are strongly correlated with the formation of the ErNbO_(4) phase at the interface. Furthermore, DFT calculations reveal that the interfacial bonding energy between the BCC' and FCC' phases and the ErNbO_(4) phase, after the wetting reaction, is significantly higher than the bonding energy between the initial filler and Er_(2)Si_(2)O_(7). This finding suggests that the formation of the ErNbO_(4) phase improves the wetting and spreading behavior of the filler.展开更多
Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are chall...Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.展开更多
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear...Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three...The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.展开更多
AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embas...AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.展开更多
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金Funding for this research was provided by the Yunnan Provincial Science and Technology Department(Grant Nos.202302AB080023,202402AC080002,202303AA080015,202301BC070001-001)the Open Projects of Yunnan Precious Metals Laboratory Co.,Ltd(Grant Nos.YPML-20240502046,YPML-2023050205,YPML-2023050254)+1 种基金Yunnan Fundamental Research Projects(Grant No.202201AT070161)Revitalizing Yunnan Talents Support Plan and Yunnan Province High-level Talent Introduction Program(C619300A023,K264204240011).C.Jin received partial support from the HZWTECH-PROP projects.
文摘The traditional trial-and-error method for designing refractory multi-principal element alloys(RMPEAs)is inefficient due to a vast compositional design space and high experimental costs.To surmount this challenge,the data-driven material design based on machine learning(ML)has emerged as a critical tool for accelerating materials design.However,the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs.High-throughput(HTP)calculations have enabled the creation of such datasets.This study addresses these challenges by developing a data-driven framework for predicting the elastic properties of RMPEAs,integrating HTP calculations with ML.A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method.A novel stacking ensemble regression algorithm combining multilayer perceptron(MLP)and gradient boosting decision tree(GBDT)was developed,which achieved 92.9%accuracy in predicting the elastic properties of Ti-V-Nb-Ta alloys.Verification experiments confirmed the ML model's accuracy and robustness.This integration of HTP calculations and ML provides a costeffective,efficient,and precise alloy design strategy,advancing RMPEAs development.
基金supported by the National Natural Science Foundation of China(52471240)the Natural Science Foundation of Zhejiang Province(LZ23B030003)+2 种基金the Fundamental Research Funds for the Central Universities(226-2024-00075)support from the Engineering and Physical Sciences Research Council(EPSRC,UK)RiR grant-RIR18221018-1EU COST CA23155。
文摘The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter persistent dendrite growth and parasitic reactions,driven by the inhomogeneous charge distribution and water-dominated environment within the EDL.Compounding this,classical EDL theory,rooted in meanfield approximations,further fails to resolve molecular-scale interfacial dynamics under battery-operating conditions,limiting mechanistic insights.Herein,we established a multiscale theoretical calculation framework from single molecular characteristics to interfacial ion distribution,revealing the EDL’s structure and interactions between different ions and molecules,which helps us understand the parasitic processes in depth.Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helmholtz plane drives severe hydrogen evolution and by-product formation.Guided by these insights,we engineered a“water-poor and anion-expelled”EDL using 4,1’,6’-trichlorogalactosucrose(TGS)as an electrolyte additive.As a result,Zn||Zn symmetric cells with TGS exhibited stable cycling for over 4700 h under a current density of 1 mA cm^(−2),while NaV_(3)O_(8)·1.5H_(2)O-based full cells kept 90.4%of the initial specific capacity after 800 cycles at 5 A g^(−1).This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance ARZB design through integrated theory-experiment approaches.
基金supported by the National Natural Science Foundation of China(Grants Nos.12174450 and 11874429)the National Talents Program of China,the Science and Technology Innovation Program of Hunan Province(Grant No.2024RC1013)+3 种基金the Key Project of Hunan Provincial Natural Science Foundation(Grant No.2024JJ3029)the Hunan Provincial Key Research and Development Program(Grant No.2022WK2002)the Distinguished Youth Foundation of Hunan Province(Grant No.2020JJ2039),the Project of High-Level Talents Accumulation of Hunan Province(Grant No.2018RS3021)Program of Hundreds of Talents of Hunan Province,the State Key Laboratory of Powder Metallurgy,Start-up Funding and Innovation-Driven Plan(Grant No.2019CX023)of Central South University,Postgraduate Scientific Research Innovation Project of Hunan Province(Grants No.CX20230104)。
文摘Spin Hall effect(SHE)provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing.In this work,we conduct high-throughput calculations on the spin Hall conductivity(SHC)of antiperovskite compounds with the composition ZXM3,where Z is a nonmetal,X is a metal,and M is a platinum group metal.From an initial database over 4500 structures,we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500(ℏ/e)(Ω^(⁻1)cm^(⁻1)).We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level.In addition,SHCs can be regulated through proper doping of electrons or holes.The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11404131,11674121)the Program for JLU Science and Technology Innovative Research Teamthe Special Fund for Talent Exploitation in Jilin Province of China
文摘Two-dimensional group-VIB transition metal dichalcogenides(with the formula of MX2) emerge as a family of intensely investigated semiconductors that are promising for both electronic(because of their reasonable carrier mobility) and optoelectronic(because of their direct band gap at monolayer thickness) applications. Effective mass is a crucial physical quantity determining carriers transport, and thus the performance of these applications. Here we present based on first-principles high-throughput calculations a computational study of carrier effective masses of the two-dimensional MX2 materials. Both electron and hole effective masses of different MX2(M = Mo, W and X = S, Se, Te), including in-layer/out-of-layer components, thickness dependence, and magnitude variation in heterostructures, are systemically calculated. The numerical results, chemical trends, and the insights gained provide useful guidance for understanding the key factors controlling carrier effective masses in the MX2 system and further engineering the mass values to improve device performance.
基金the National Key Research and Development Program of China(Grant No.2017YFE0129000)the National Natural Science Foundation of China(Grant Nos.51871121,11874223,and 11404172).
文摘Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
基金Project support by the National Key R&D Program of China(Grant Nos.2017YFB0701501,2017YFB0701502,and 2017YFB0701503)
文摘Using high-throughput first-principles calculations, we systematically studied the synergistic effect of alloying two elements (AI and 28 kinds of 3d, 4d, and 5d transition metals) on the elastic constants and elastic moduli of γ-Ni. We used machine learning to theoretically predict the relationship between alloying concentration and mechanical properties, giving the binding energy between the two elements. We found that the ternary alloying elements strengthened the 7 phase in the order of Re 〉 Ir 〉 W 〉 Ru 〉 Cr 〉 Mo 〉 Pt 〉 Ta 〉 Co. There is a quadratic parabolic relationship between the number of d shell electrons in the alloying element and the bulk modulus, and the maximum bulk modulus appears when the d shell is half full. We found a linear relationship between bulk modulus and alloying concentration over a certain alloying range. Using linear regression, we found the linear fit concentration coefficient of 29 elements. Using machine learning to theoretically predict the bulk modulus and lattice constants of Ni32XY, we predicted values close to the calculated results, with a regression parameter of R2 = 0.99626. Compared with pure Ni, the alloyed Ni has higher bulk modulus B, G, E, Cll, and C44, but equal Cl2. The alloying strengthening in some of these systems is closely tied to the binding of elements, indicating that the binding energy of the alloy is a way to assess its elastic properties.
基金financially supported by the Natural Science Foundation of Shanghai(No.20ZR1419200)the National Natural Science Foundation of China(No.51972089)the Program for Professor of Special Appointment(Eastern Scholar)by Shanghai Municipal Education Commission(No.TP2015040)。
文摘Recent technical progress in the industry has led to an urgent requirement on new materials with enhanced multi-properties.To meet this multi-property requirement,the materials consisting of three and more elements have attracted increasing attention.However,facing to the nearly unknown huge multi-component materials system,the traditional trial and error method cannot provide sufficient data efficiently.Therefore,an efficient material innovation strategy is significant.The first-principles calculation based on the density functional theory is a powerful tool for both the accurate prediction of material properties and the identification of its underlying thermodynamics and dynamics.At the same time,the advances of computational methods and computer calculation abilities that are orders of magnitude faster than before make the high throughput first-principles calculations popular.At present,the simulation-assisted material design has become a main branch in the material research field and a great many successes have been made.In this article,the advances of the high throughput first-principles calculations are reviewed to show the achievements of the first-principles calculations and guide the future directions of its applications in ceramics.
基金financially supported by the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province (No.202002AB080001-3)the National Natural Science Foundation of China (No.52001150)
文摘Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.All alloying elements in these calculations were thermodynamically favorable,which indicated that these elements could be dissolved inα-Ti alloys.Ti_(35)Os had the highest elastic modulus as compared to those of other dilute Tibased solid solutions.Au,Co,and Pt were found to be promising candidates for improving the ductilities ofα-Ti solid solution alloys.Solid solution strengthening was analyzed using Cottrell's and Labush's models.Based on the solid solubility,Ir,Rh,Ni,and Pt were found to possess the best solid solution hardening effects in the following order:Ir>Rh>Ni>Pt.The bonding state between Ti and the impurity atom was visually characterized owing to the difference between their charge densities.By integrating the calculations of mean bond length and mean population,the results showed that Ti-Os had the largest mean population and degree of delocalization of the electron cloud around the solute atom,implying ionic characteristics of Os and Ti.Furthermore,after analyzing the alloying elements of each group,we found thatⅧ-group elements(Ru,Rh,Pd,Os,Ir,Pt)had good potentials for improving the comprehensive mechanical properties of Ti alloys.
基金supported by the National Natural Science Foundation of China(Grant no.52463025,and 52062035)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Grant no.20213BCJ22056)+2 种基金the Key R&D Program of Jiangxi Province(Grant no.20223BBE51028)the Jiangxi Province Key Laboratory of Lithium-ion Battery Materials and Application(2024SSY05202)the Jiangxi Province Graduate Innovation Special Fund Project(YC2023-B004)。
文摘Oxygen release from Ni-rich cathode is one of the major structural degradations resulting in rapid performance fading in lithium-ion batteries(LIBs).The energy gap between the transition metals(TM)-d band and the O-p band serves as an effective evaluation metric in characterizing the potential for oxygen release.Given that the primary oxidation factors of NCM811 materials vary at different states of charge(SOC),this study employs high-throughput density functional theory(DFT)calculations combined with machine learning(ML)to systematically investigate the regulation mechanism of heteroatoms on the energy gap between the TM-d band(TM=Ni,Co)and O-p band at various SOC levels.Highthroughput DFT calculations were used to study doping thermodynamic stability and complete the database.The results indicate that dopant atoms remain at their original sites even at 50%SOC.Correlation analysis reveals that at 0 SOC,the dopant reduces Ni-O bonding interactions by forming its own bonds with oxygen,thereby preventing lattice oxygen escape and weakening the oxygen binding of the system during Ni redox.At 50%SOC,the dopant and Co atoms synergistically strengthen their bonding interactions with oxygen,thereby maintaining structural stability and inhibiting lattice oxygen escape.Based on R^(2)and root-mean-square error(RMSE),the gradient boosting regression(GBR)algorithm is identified as optimal for predicting the energy gaps between the Ni-d band and O-p band,as well as between the Co-d band and O-p band.Feature importance analysis demonstrates that the magnetic moment(Dma)of the doped atom significantly contributes to the prediction of ΔNi-O and ΔCo-O.In this study,the energy gap regulation mechanisms of Ni-d/O-p and Co-d/O-p are systematically investigated using non-empirical first principle calculations combined with data-driven machine learning,aiming to provide insights into the electrochemical stability of NCM811 and related materials.
基金the National Natural Science Foundation of China(No.51602188 and 51621091)the Program for Professor of Special Appointment(Eastern Scholar)by Shanghai Municipal Education Commission(No.TP2015040).
文摘Searching for new materials with extra low thermal conductivities is significant in numerous fields like thermal barrier coatings and thermoelectric devices.Traditional multiple-component design has successfully reduced the thermal conductivity,but it also dramatically increases the complexity of manufactural technologies and the risk of material failures.In this work,a specific category known as ABO_(4) scheelites that with both simple crystal structure and the structural signature of the low lattice thermal conductivity is explored.High-throughput calculations are employed to screen for the materials with the targeted performance by multi-dimensional mechanical/thermal property criteria and a database of 46 stable scheelites is constructed.Seven scheelites with both ultra-low thermal conductivities(<1.2 W/(m∙K))and quasi-ductility are predicted to be novel thermal insulation materials.Low thermal conductivities prefer the scheelites with large valence disparity between“A”and“B”cations and/or small ionic radius ratio.The adopted strategy starting from the structural fingerprint and the data-driven material selection is expected to be a reference of future structural and functional ceramics design.
文摘As cataract surgery progresses from “restoration of sight” to “refractive correction”, precise prediction of intraocular lens (IOL) power is critical for enhancing postoperative visual quality in patients. IOL power calculation methods have evolved and innovated throughout time, from early theoretical and regression formulas to nonlinear formulas for estimating effective lens position (ELP), multivariable formulas, and innovative formulas that use optical principles and AI-based online formulas. This paper thoroughly discusses the development and iteration of traditional IOL calculation formulas, the emergence of new IOL calculation formulas, and the selection of IOL calculation formulas for different patients in the era of refractive cataract surgery, serving as a reference for “personalized” IOL implantation in clinical practice.
基金Funded by the National Key R&D Program of China(No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2022212004)the National Natural Science Foundation of China(No.52171045),and the Joint Fund(No.8091B022108)。
文摘The effects of pressure on the structural stability,elasticity,electronic properties,and thermodynamic properties of Al,Al_(3)Cu,Al_(2)Cu,Al_(4)Cu_(9),AlCu_(3),and Cu were investigated using first-principles calculations.The experimental results indicate that the calculated equilibrium lattice constant,elastic constant,and elastic modulus agree with both theoretical and experimental data at 0 GPa.The Young's modulus,bulk modulus,and shear modulus increase with increasing pressure.The influence of pressure on mechanical properties is explained from a chemical bond perspective.By employing the quasi-harmonic approximation model of phonon calculation,the temperature and pressure dependence of thermodynamic parameters in the range of 0 to 800 K and 0 to 100 GPa are determined.The findings demonstrate that the thermal capacity and coefficient of thermal expansion increase with increasing temperature and decrease with increasing pressure.This study provides fundamental data and support for experimental investigations and further theoretical research on the properties of aluminum-copper intermetallic compounds.
基金support from the National Natural Science Foundation of China(No.52374402)the National Key Research and Development Program(No.2022YFB3402200)+2 种基金the National Science and Technology Major Project(No.J2022-VII-0003-0045)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2024055).
文摘The vacuum reactive wetting and brazing of Er_(2)Si_(2)O_(7)/MoSi_(2) coatings were investigated using a (CoFeNiCrMn)_(88)Nb_(12) high-entropy alloy (HEA) brazing filler. The microstructural evolution and wettability of the HEA filler were analyzed, with particular attention to the surface energy, interfacial stability, and electronic properties of the HEA filler/rare earth silicate coating system, as determined by density functional theory (DFT). As Nb diffused into the interface and the ErNbO_(4) phase formed, the wetting angle gradually decreased to 23.12° The effective wetting and spreading of the HEA brazing filler on the rare earth silicate coating surface are strongly correlated with the formation of the ErNbO_(4) phase at the interface. Furthermore, DFT calculations reveal that the interfacial bonding energy between the BCC' and FCC' phases and the ErNbO_(4) phase, after the wetting reaction, is significantly higher than the bonding energy between the initial filler and Er_(2)Si_(2)O_(7). This finding suggests that the formation of the ErNbO_(4) phase improves the wetting and spreading behavior of the filler.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12393831 and 12088101).
文摘Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers.First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions.In this work,we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations.The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities,such as the Stark shift parameter.It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates.The results could be useful for developing quantum computing architectures based on shallow donors in Si.
文摘Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Zhejiang Provincial Natural Science Foundation of China for Young Scholars(Project No.:LQ20A020009)National College Students’Innovation and Entrepreneurship Training Program(Project No.:202311842014X)。
文摘The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.
基金Supported by Beijing Natural Science Foundation from Beijing Municipal Government(No.7202030).
文摘AIM:To investigate the effect of pharmacological pupil alterations on intraocular lens(IOL)power calculations.METHODS:A systematic review and Meta-analysis of studies published before December 2023 in the PubMed,Embase,and Cochrane library databases on the accuracy of pharmacological pupil changes on IOL power calculation was performed.The primary outcome was the results of IOL power calculations before and after the use of medications.Subgroup analyses were performed based on participants’basic characteristics,such as age,axial length(AL),and whether miosis or mydriasis were used as classification criteria for further analyses.Each eligible study was evaluated for potential risk of bias by the AHRQ assessment scale.The study was registered on PROSPERO(CRD 42024497535).RESULTS:A total of 3062 eyes from 21 studies were eligible.There was no significant difference in the IOL power calculation before and after pharmacological pupil changes using any of the Hoffer Q(WMD=0.055,95%CI=-0.046–0.156;P=0.29),SRK/T(WMD=0.003,95%CI=-0.073–0.080;P=0.93),Haigis(WMD=-0.030,95%CI=-0.176–0.116;P=0.69),Holladay 2(WMD=-0.042,95%CI=-0.366–0.282;P=0.80),and Barrett Universal Ⅱ(WMD=0.033,95%CI=-0.061–0.127;P=0.49)formulas.On the measurement of parameters related to IOL power calculation,for either miosis or mydriasis AL(P=0.98 and 0.29,respectively),lens thickness(P=0.96 and 0.13,respectively),and mean keratometry(P=0.90 and 0.86,respectively)did not present significant differences,while anterior chamber depth(P=0.07 and<0.01,respectively)and white-to-white distance(P=0.01 and 0.04,respectively)changed significantly between the two measurements prior and posterior.At the same time,despite there being some participants with the difference between the before and after calculations greater than 0.5 diopter,there was no significant difference in the incidence rate between these formulas.CONCLUSION:There is no significant effect of pharmacological pupil changes on the IOL power calculation.It will considerably reduce the visit time burden for patients who require cataract surgery.