期刊文献+
共找到87,772篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of High-temperature Damage on Rice Growth and Its Countermeasures
1
作者 谭诗琪 申双和 邓丽蓉 《Agricultural Science & Technology》 CAS 2016年第9期2062-2066,2118,共6页
This study introduced the effects of high-temperature damage on rice and reviewed the damage mechanism, heat damage index and risk assessment, forewarning and monitoring. On the basis of extensive studies, this paper ... This study introduced the effects of high-temperature damage on rice and reviewed the damage mechanism, heat damage index and risk assessment, forewarning and monitoring. On the basis of extensive studies, this paper put forward the viewpoints of ascertaining the fundamental mechanism of high temperature damage to rice at the molecular level, establishing a comprehensive heat damage index taking variety, growth stage and other meteorological factors into consideration, selecting appropriate sowing time, choosing heat-resistant varieties and improving the prevention system. All of these are aimed at providing a solid foundation for coping avoiding the harms from heat damage and improving the coping method. 展开更多
关键词 Rice (Oryza sativa L) high-temperature damage INDEX Risk assessment Forewarning and monitoring
在线阅读 下载PDF
Revealing effects of creep damage on high-temperature fatigue behavior for HfNbTiZr refractory high-entropy alloys:Experimental investigation and crystal-plasticity modelling 被引量:1
2
作者 Long Xu Hui Chen +6 位作者 Yuefei Jia Dongpeng Wang Shiwei Wu Yandong Jia Gang Wang Zixu Guo Yilun Xu 《Journal of Materials Science & Technology》 2025年第28期134-150,共17页
Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behav... Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behavior hinder further development.This study systematically investigates the low-cycle fatigue(LCF)behavior of HfNbTiZr RHEA at room temperature(25℃)and elevated temperatures(350,450,and 600℃)through a combination of experimental analyses and dislocation-based damage-coupled crystal plasticity finite element(CPFE)simulations,to unveil the effects of creep damage on LCF behavior at varying temperatures.The results indicate that the LCF life dramatically decreases at an increased tem-perature,shifting from transgranular fatigue damage at lower temperatures(25-350℃)to a dual damage mechanism involving both intergranular fatigue and creep damage at higher temperatures(450-600℃).At 600℃,creep damage notably contributes to the accumulation of geometrically necessary dislocations(GNDs),crack initiation,and propagation at grain boundaries,and thus accelerates LCF failure.Compara-tive CPFE simulations reveal that creep damage significantly contributes to cyclic softening and reduction in elastic modulus,which also amplifies the strain localization under the LCF loading.The contribution of creep damage to the total stored energy density(SED)representing the overall damage increases with temperatures,accounting for 11%at 600℃.Additionally,CPFE simulations indicate that the creep dam-age notably influences the magnitude of GND density localized at grain boundaries.This study provides critical insights into the fatigue damage mechanisms of RHEAs,offering valuable guidance for their ap-plication in high temperatures. 展开更多
关键词 Refractory high-entropy alloys Elevated-temperature low-cycle fatigue Crystal plasticity finite element simulation Fatigue damage mechanisms Creep damage effect
原文传递
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
3
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
The combination of Astragali Radix and Anemarrhenae Rhizoma in the treatment of ultraviolet skin damage by regulating the PI3K-AKT pathway
4
作者 Jin-Sui He Jia-Yan Lin +6 位作者 Ding-Kang Sun Yi-Fan Zhao Pan Yang Li-Sha Ma Chun-Yan Diao Xue-Ying Liu Qing-Wei Wang 《Traditional Medicine Research》 2026年第3期1-11,共11页
Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and ... Background:Human skin is affected by ultraviolet rays on a daily basis,and excessive ultraviolet radiation(UVR)can lead to sunburn erythema,tanning,photoaging,and skin tumors.The combination of Astragali Radix(AR)and Anemarrhenae Rhizoma(AAR)is a common pairing in traditional Chinese medicine(TCM).According to earlier studies,they possess properties capable of alleviating the adverse impacts of UVR on the skin.However,the specific actions and underlying mechanisms require further investigation.The study aims to analyze the efficacy of AR-AAR in preventing UVR-induced skin damage and to clarify the associated molecular mechanisms.Methods:Potential signaling pathways by which AR and AAR may protect against UVR-induced skin damage were identified with network pharmacology,molecular docking techniques and molecular dynamics(MD)simulation.Except the normal group,the back skin of SD rats was exposed to 1.1 mW/cm^(2) UVA combined with 0.1 mW/cm^(2) UVB daily,and the UVR skin damage model was established.Morphological features of skin tissues of different groups were discovered through Hematoxylin and Eosin(HE)staining,Masson staining,Weigert staining.ELISA was utilized to measure the levels of reactive oxygen species(ROS),Interleukin 6(IL-6),Interleukin 1β(IL-1β)and Tumor necrosis factos-α(TNF-α)in skin tissues.RT-PCR and Western blot were employed to quantify the mRNA and protein contents of PI3K,AKT,and MMP-9.Results:Network pharmacology analysis predicts that AR-AAR may improve skin damage induced by UVR through the PI3K/AKT signaling pathway.Histological staining shows that AR-AAR can significantly reduce inflammatory infiltration and fibrosis in damaged skin.Treatment with AR-AAR(2:1)significantly reduced the expression levels of IL-1β,IL-6,TNF-αand ROS in UVR-damaged rat skin.After treatment with AR-AAR(2:1),not only did the relative mRNA expression levels of PI3K and AKT and the protein expression levels of PI3K,AKT,P-PI3K,and P-AKT increase,but the mRNA and protein expression levels of MMP-9 decreased.Conclusion:The study indicate that the AR-AAR combination and its active components may mitigate UVR skin damage by modulating the PI3K/AKT signaling pathway. 展开更多
关键词 Astragali Radix Anemarrhenae Rhizoma COMBINATION ULTRAVIOLET skin damage
暂未订购
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
5
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
3D printed high-temperature ceramic conformal array antenna:Design,analysis,manufacturing,and testing
6
作者 Peng Li Ruibo Li +5 位作者 Zijiao Fan Jiujiu Han Guangda Ding Qunbiao Wang Wanye Xu Paolo Rocca 《Defence Technology(防务技术)》 2026年第1期340-353,共14页
In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved cerami... In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures. 展开更多
关键词 Ceramic antenna Conformal array high-temperature environment 3D printing High gain and wide band
在线阅读 下载PDF
Damage and repair in retinal degenerative diseases:Molecular basis through clinical translation
7
作者 Ziting Zhang Junfeng Ma +3 位作者 Wahid Shah Xin Quan Tao Ding Yuan Gao 《Neural Regeneration Research》 2026年第4期1383-1395,共13页
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological change... Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision. 展开更多
关键词 cell replacement therapy DEGENERATION GLAUCOMA optic nerve damage regenerative medicine retinal degenerative disease retinal diseases retinal ganglion cells stem cell therapy vision restoration
暂未订购
Progress in monitoring high-temperature damage to rice through satellite and ground-based optical remote sensing 被引量:11
8
作者 ZHANG JiaHua YAO FengMei +4 位作者 LI BingBai YAN Hao HOU YingYu CHENG GaoFeng Vijendra BOKEN 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1801-1811,共11页
The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects... The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized. 展开更多
关键词 satellite and ground-based optical remote sensing infrared remote sensing hyperspectral remote sensing RICE high- temperature damage
原文传递
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations:A Review 被引量:5
9
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
10
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface 被引量:1
11
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
Creep constitutive model for damaged soft rock based on fractional-order nonlinear theory 被引量:1
12
作者 BAO Min ZHOU Zihan +1 位作者 CHEN Zhonghui ZHANG Lingfei 《Journal of Mountain Science》 2025年第6期2276-2290,共15页
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s... Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models. 展开更多
关键词 Mining damage Creep damage FRACTIONAL-ORDER Constitutive model Secondary development
原文传递
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
13
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 Entropy-stabilized spinel Thermal conductivity high-temperature performance Configurational entropy
原文传递
In-situ high-temperature EBSD study of austenite reversion from martensite,bainite and pearlite in a high-strength steel 被引量:1
14
作者 X.L.Wang X.Y.Wang +2 位作者 Z.P.Liu Z.J.Xie C.J.Shang 《Journal of Materials Science & Technology》 2025年第14期268-280,共13页
The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatte... The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure. 展开更多
关键词 In-situ characterization high-temperature EBSD Austenite reversion CEMENTITE Nucleation and growth Crystallography
原文传递
Multi-scale damage and fracture analysis and statistical damage constitutive model of shallow coral reef limestone based on digital core 被引量:1
15
作者 Yingwei Zhu Xinping Li +4 位作者 Zhengrong Zhou Dengxing Qu Fei Meng Shaohua Hu Wenjie Li 《International Journal of Mining Science and Technology》 2025年第11期1849-1869,共21页
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime... Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL. 展开更多
关键词 Coral reef limestone Multi-scale mechanics Digital core Pore structure Representative volume element damage and fracture damage statistical constitutive model
在线阅读 下载PDF
Impact of Zika virus non-structural protein mutations on hippocampal damage
16
作者 Larissa M.G.Cassiano Roney S.Coimbra 《Neural Regeneration Research》 SCIE CAS 2025年第8期2307-2308,共2页
The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Braz... The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments. 展开更多
关键词 damage FETAL NEONATAL
暂未订购
DNA Damage Response and Its Inhibitors:Current Perspectives and Future Directions 被引量:1
17
作者 ZHENG Xueyi XIE Dan CAI Muyan 《中国细胞生物学学报》 2025年第3期542-559,共18页
The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increas... The DDR(DNA damage response)is an essential cellular mechanism that detects and repairs DNA lesions to maintain genomic stability.Dysregulation of DDR pathways is frequently observed in human tumors,leading to increased genomic instability and promoting tumor progression.Consequently,targeting DDR mechanisms has emerged as a promising therapeutic strategy in oncology.This review provides an overview of the major DDR pathways,highlighting the roles of key proteins involved in various DDR processes.A detailed understanding of these molecular mechanisms has paved the way for the development of targeted antitumor agents,including inhibitors of PARP1,ATM,ATR,CHK1,CHK2,DNA-PK,and WEE1.Additionally,the significant challenges in the development of DDR inhibitors are examined,including tumor microenvironment heterogeneity,resistance mechanisms,issues with selectivity and toxicity,and the complexities associated with clinical trial design.Finally,future directions and emerging strategies to improve DDR-targeted therapies are discussed.These strategies include biomarker-driven precision medicine,novel combination therapies,advanced drug delivery systems,and the potential application of artificial intelligence to optimize treatment outcomes. 展开更多
关键词 DNA damage response INHIBITOR BIOMARKER
原文传递
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
18
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Penetration-deflagration coupling damage performance of rod-like reactive shaped charge penetrator impacting thick steel plates 被引量:1
19
作者 Tao Sun Haifu Wang +3 位作者 Shipeng Wang Jie Gong Wenhao Qiu Yuanfeng Zheng 《Defence Technology(防务技术)》 2025年第7期152-164,共13页
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra... The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly. 展开更多
关键词 Reactive materials Al-PTFE composites Penetration model damage effect
在线阅读 下载PDF
Investigation on Fatigue Damage of Offshore Risers Due to Slug-Induced Vibrations Based on Arbitrary Lagrangian-Eulerian(ALE)-Absolute Nodal Coordinate Formulation(ANCF) 被引量:1
20
作者 LIU De-peng ZHANG Yu AI Shang-mao 《China Ocean Engineering》 2025年第5期941-955,共15页
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A... This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments. 展开更多
关键词 slug flow offshore riser fatigue damage dynamic analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部