Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilizatio...Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.展开更多
China’s national agricultural high-tech industry demonstration zones focus on supply-side structural reform in their overall plan of development.This paper selected the China’s marine industry as its research subjec...China’s national agricultural high-tech industry demonstration zones focus on supply-side structural reform in their overall plan of development.This paper selected the China’s marine industry as its research subject and analyzes its current situation and major problems.After summarizing the current researches of China’s marine industry parks,from the perspective of supply-side structural reform,this paper specifies the tasks and objectives of the construction of the marine hi-tech industry demonstration zones.The overall planning of the demonstration zones must set distinctive developmen as its orientation,and we should emphasize innovation-driven and green development,devise a functional zoning that embraces marine-land and allround integration,and seek mechanism innovations that could invigorate the inner drive of development.The paper also puts forward the major principles that the planning of marine hi-tech industry demonstration zones should obey in the context of supply-side structural reform.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Based on the requirements of local high-quality economic development and addressing the critical task of transformation and upgrading in the tea industry,this paper systematically discusses the necessity and feasibili...Based on the requirements of local high-quality economic development and addressing the critical task of transformation and upgrading in the tea industry,this paper systematically discusses the necessity and feasibility of constructing an optimal industrialization operation system driven by the dual wheels of"branding+standardization".The article first clarifies the connotation of high-quality development and the synergistic mechanism between branding and standardization.It then analyzes the current situation and bottlenecks of China's tea industry development.Subsequently,it proposes a dual-wheel drive strategy where branding enhances value and standardization guarantees quality,and designs a systematic implementation plan involving industrial chain synergy optimization and integrated support from government,industry,academia,research,and application.On this basis,strategies and suggestions are proposed,encompassing the starting point,standard focal points,key effort areas,innovation points,and target achievement points.The aim is to promote the tea industry to break through homogeneous competition,achieve value ascent,and provide important industrial support for regional high-quality development through the construction of the aforementioned system.展开更多
The“government-industry-university-research”model has significant practical significance in promoting the development of industries in colleges and universities and improving the quality of talent cultivation.This p...The“government-industry-university-research”model has significant practical significance in promoting the development of industries in colleges and universities and improving the quality of talent cultivation.This paper first provides a brief explanation of the concept and significance of the“government-industry-university-research”model,then conducts an in-depth analysis of the problems faced by the development of university industries,and finally proposes effective solutions to the problems faced by the development of university industries,hoping to provide some references and lessons for promoting the continuous development of university industries and the integration of industry and education.展开更多
Objective To empirically analyze the relationship between Government R&D funding and R&D investment of the enterprises in different sub industries of pharmaceutical industry,and to provide reference for the de...Objective To empirically analyze the relationship between Government R&D funding and R&D investment of the enterprises in different sub industries of pharmaceutical industry,and to provide reference for the development of policies related to R&D funding input.Methods Granger causality test was performed using the data of relevant indicators in different sub industries of China’s pharmaceutical industry from 1995 to 2019 based on the theory of covariance.Results and Conclusion The funding of R&D from the government had a significant positive effect on their R&D funding inputs to enterprises with chemo products,Chinese patent products,and biological products.It means the improvement of government funding was beneficial in promoting the R&D investment from various sub industries of pharmaceutical industry.The order of this influence was biological products,chemo products,and Chinese patent drugs.As to chemical drugs and biological products,the government’s R&D funding and enterprises R&D funding input showed a good trend of mutual promotion in a certain lag period.The government can fully leverage its funding to promote the investment of all sub industries of pharmaceutical industry.Meanwhile,regulatory mechanisms should be refined for government funding.For the inheritance,innovation,and development of traditional Chinese medicine,the government should give more policy support than financial support.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemi...To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemical industry(MCC),pharmaceutical industry(PM),pesticide industry(PE),coking industry(CO)and organic chemical industry(OC).The chemical composition of 91 VOCs was quantitatively analyzed.The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m^(3).Alkanes were the main emission components of MCC(62.0%),PE(55.1%),and OC(58.5%).Alkenes(46.5%)were important components of PM,followed by alkanes(23.8%)and oxygenated volatile organic compounds(OVOCs)(21.2%).Halocarbons(8.6%-71.1%),OVOCs(9.7%-37.6%)and alkanes(11.2%-27.0%)were characteristic components of CO.The largest contributor to OFP was alkenes(0.6%-81.7%),followed by alkanes(9.3%-45.9%),and the lowest onewas alkyne(0%-0.5%).Aromatics(66.9%-85.4%)were the largest contributing components to SOA generation,followed by alkanes(2.6%-28.5%),and the lowest one was alkenes(0%-4.1%).Ethylene and BTEX were the key active species in various chemical industries.The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work,and BTEX and dichloromethane were the largest contributors.展开更多
In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and...In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and industry upgrades but also played a significant role in the rapid development of emerging industries.Based on the installed number of industrial robots and the industrial data by the National Bureau of Statistics,this study establishes a theoretical framework with the econometric model and compares the impact of AI on different categories of industries through empirical analysis.Our results show that AI not only promotes economic growth but also plays a key role in promoting the tertiary industry.Hence,optimization of industrial structure and economic upgrade can be induced.展开更多
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste...As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.展开更多
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch...China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.展开更多
Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 ...Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.展开更多
The promotion of deep decarbonization in the cement industry is crucial for mitigating global climate change,a key component of which is carbon capture,utilization,and storage(CCUS)technology.Despite its importance,th...The promotion of deep decarbonization in the cement industry is crucial for mitigating global climate change,a key component of which is carbon capture,utilization,and storage(CCUS)technology.Despite its importance,there is a lack of empirical assessments of early opportunities for CCUS implementation in the cement sector.In this study,a comprehensive onshore and offshore source–sink matching optimization assessment framework for CCUS retrofitting in the cement industry,called the SSM-Cement framework,is proposed.The framework comprises four main modules:the cement plant suitability screening module,the storage site assessment module,the source–sink matching optimization model module,and the economic assessment module.By applying this framework to China,919 candidates are initially screened from 1132 existing cement plants.Further,603 CCUS-ready cement plants are identified,and are found to achieve a cumulative emission reduction of 18.5 Gt CO_(2) from 2030 to 2060 by meeting the CCUS feasibility conditions for constructing both onshore and offshore CO_(2) transportation routes.The levelized cost of cement(LCOC)is found to range from 30 to 96(mean 73)USD·(t cement)^(-1),while the levelized carbon avoidance cost(LCAC)ranges from^(-5) to 140(mean 88)USD·(t CO_(2))^(-1).The northeastern and northwestern regions of China are considered priority areas for CCUS implementation,with the LCAC concentrated in the range of 35 to 70 USD·(t CO_(2))^(-1).In addition to onshore storage of 15.8 Gt CO_(2) from 2030 to 2060,offshore storage would contribute 2.7 Gt of decarbonization for coastal cement plants,with comparable LCACs around 90 USD·(t CO_(2))^(-1).展开更多
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ...Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.展开更多
To solve the challenges of connecting and coordinating multiple platforms in the automotive industry and to enhance collaboration among different participants,this research focuses on addressing the complex supply rel...To solve the challenges of connecting and coordinating multiple platforms in the automotive industry and to enhance collaboration among different participants,this research focuses on addressing the complex supply relationships in the automotive market,improving data sharing and interactions across various platforms,and achieving more detailed integration of data and operations.We propose a trust evaluation permission delegation method based on the automotive industry chain.The proposed method combines smart contracts with trust evaluation mechanisms,dynamically calculating the trust value of users based on the historical behavior of the delegated entity,network environment,and other factors to avoid malicious node attacks during the permission delegation process.We also introduce strict control over the cross-domain permission granting and revocation mechanisms to manage the delegation path,prevent information leakage caused by malicious node interception,and effectively protect data integrity and privacy.Experimental analysis shows that this method meets the realtime requirements of collaborative interaction in the automotive industry chain and provides a feasible solution to permission delegation issues in the automotive industry chain,offering dynamic flexibility in authorization and scalability compared to most existing solutions.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear i...This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.展开更多
Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind ene...Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.展开更多
Taiwan,a Southeast Asian region,achieved rapid economic growth and the level of economic development it achieved in the 20th century,making it one of the countries and/or regions that created the Asian Miracle in the ...Taiwan,a Southeast Asian region,achieved rapid economic growth and the level of economic development it achieved in the 20th century,making it one of the countries and/or regions that created the Asian Miracle in the 1990s.Following the establishment of the People's Republic of China under the leadership of Mao,Chinese Nationalist Party leader Chiang Kai-shek established the Republic of China in Taiwan and established Taipei as its capital.Taiwan's automotive industry began with the establishment of a vehicle manufacturing company in 1953.Starting in the mid-1960s,automotive industry production began to increase,and with the new economic policies of the government from 1985 onwards,rapid production increases in the automotive industry accompanied the high economic growth rates.In addition,Taiwan Region of China automotive companies were able to shift their production to China in order to benefit from the rapid economic growth period in China in the 1980s.Thus,we can say that the rapidly growing Taiwan Region of China automotive industry came into question in the 1990s with all internal and external effects.Focusing on the historical development of the automotive industry is important in order to determine whether the development in the automotive industry is dependent on path.Today,we can say that Taiwan is one of the important automotive manufacturers.However,we can say that it is not one of the leading manufacturers.展开更多
基金supported by the 2021 Research and Practice Project of Higher Education Teaching Reform in Henan Province(Grant No.2021SJGLX072Y).
文摘Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.
基金Humanities and Social Sciences Research Planning Foundation of China,Ministry of Education of People’s Republic of China(17YJA760076)Research Projects on Teaching Reform of Undergraduate Colleges and Universities in Shandong Province(2015M001)+1 种基金Shandong University(Weihai) Young Scholars Future Planning Project(2015WHWLJH10)Shandong University(Weihai) Teaching Research and Teaching Reform Project(B201614)
文摘China’s national agricultural high-tech industry demonstration zones focus on supply-side structural reform in their overall plan of development.This paper selected the China’s marine industry as its research subject and analyzes its current situation and major problems.After summarizing the current researches of China’s marine industry parks,from the perspective of supply-side structural reform,this paper specifies the tasks and objectives of the construction of the marine hi-tech industry demonstration zones.The overall planning of the demonstration zones must set distinctive developmen as its orientation,and we should emphasize innovation-driven and green development,devise a functional zoning that embraces marine-land and allround integration,and seek mechanism innovations that could invigorate the inner drive of development.The paper also puts forward the major principles that the planning of marine hi-tech industry demonstration zones should obey in the context of supply-side structural reform.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金Supported by General Project of Philosophy and Social Sciences Research in Universities of Jiangsu Province,2024(2024SJYB1650).
文摘Based on the requirements of local high-quality economic development and addressing the critical task of transformation and upgrading in the tea industry,this paper systematically discusses the necessity and feasibility of constructing an optimal industrialization operation system driven by the dual wheels of"branding+standardization".The article first clarifies the connotation of high-quality development and the synergistic mechanism between branding and standardization.It then analyzes the current situation and bottlenecks of China's tea industry development.Subsequently,it proposes a dual-wheel drive strategy where branding enhances value and standardization guarantees quality,and designs a systematic implementation plan involving industrial chain synergy optimization and integrated support from government,industry,academia,research,and application.On this basis,strategies and suggestions are proposed,encompassing the starting point,standard focal points,key effort areas,innovation points,and target achievement points.The aim is to promote the tea industry to break through homogeneous competition,achieve value ascent,and provide important industrial support for regional high-quality development through the construction of the aforementioned system.
文摘The“government-industry-university-research”model has significant practical significance in promoting the development of industries in colleges and universities and improving the quality of talent cultivation.This paper first provides a brief explanation of the concept and significance of the“government-industry-university-research”model,then conducts an in-depth analysis of the problems faced by the development of university industries,and finally proposes effective solutions to the problems faced by the development of university industries,hoping to provide some references and lessons for promoting the continuous development of university industries and the integration of industry and education.
文摘Objective To empirically analyze the relationship between Government R&D funding and R&D investment of the enterprises in different sub industries of pharmaceutical industry,and to provide reference for the development of policies related to R&D funding input.Methods Granger causality test was performed using the data of relevant indicators in different sub industries of China’s pharmaceutical industry from 1995 to 2019 based on the theory of covariance.Results and Conclusion The funding of R&D from the government had a significant positive effect on their R&D funding inputs to enterprises with chemo products,Chinese patent products,and biological products.It means the improvement of government funding was beneficial in promoting the R&D investment from various sub industries of pharmaceutical industry.The order of this influence was biological products,chemo products,and Chinese patent drugs.As to chemical drugs and biological products,the government’s R&D funding and enterprises R&D funding input showed a good trend of mutual promotion in a certain lag period.The government can fully leverage its funding to promote the investment of all sub industries of pharmaceutical industry.Meanwhile,regulatory mechanisms should be refined for government funding.For the inheritance,innovation,and development of traditional Chinese medicine,the government should give more policy support than financial support.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金supported by the National Natural Science Foundation of China(No.41905108)the National Research Program for Key Issues in Air Pollution Control(No.DQ GG0532).
文摘To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemical industry(MCC),pharmaceutical industry(PM),pesticide industry(PE),coking industry(CO)and organic chemical industry(OC).The chemical composition of 91 VOCs was quantitatively analyzed.The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m^(3).Alkanes were the main emission components of MCC(62.0%),PE(55.1%),and OC(58.5%).Alkenes(46.5%)were important components of PM,followed by alkanes(23.8%)and oxygenated volatile organic compounds(OVOCs)(21.2%).Halocarbons(8.6%-71.1%),OVOCs(9.7%-37.6%)and alkanes(11.2%-27.0%)were characteristic components of CO.The largest contributor to OFP was alkenes(0.6%-81.7%),followed by alkanes(9.3%-45.9%),and the lowest onewas alkyne(0%-0.5%).Aromatics(66.9%-85.4%)were the largest contributing components to SOA generation,followed by alkanes(2.6%-28.5%),and the lowest one was alkenes(0%-4.1%).Ethylene and BTEX were the key active species in various chemical industries.The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work,and BTEX and dichloromethane were the largest contributors.
文摘In the new scientific and technological revolution round,artificial intelligence(AI)technology has become a key leading force for industrial change.Research shows that AI not only promoted technical transformation and industry upgrades but also played a significant role in the rapid development of emerging industries.Based on the installed number of industrial robots and the industrial data by the National Bureau of Statistics,this study establishes a theoretical framework with the econometric model and compares the impact of AI on different categories of industries through empirical analysis.Our results show that AI not only promotes economic growth but also plays a key role in promoting the tertiary industry.Hence,optimization of industrial structure and economic upgrade can be induced.
基金supported by the National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005,U2441245,62173141)+3 种基金CNPC Innovation Found(2024DQ02-0507)Shanghai Natural Science(24ZR1416400)Shanghai Baiyu Lan Talent Program Pujiang Project(24PJD020)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017)
文摘As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.
基金supported by Ningbo’s major scientific and technological breakthrough project“Research and Demonstration on the Technology of Collaborative Disposal of Secondary Ash in Typical Industrial Furnaces” (No.20212ZDYF020047)the central balance fund project“Research on Carbon Emission Accounting and Emission Reduction Potential Assessment for the Whole Life Cycle of Iron and Steel Industry” (No.2021-JY-07).
文摘China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.
基金supported by the Medical and Health Projects in Zhejiang Province(No.2022PY049)the Basic Scientific Research Project of Hangzhou Medical College(No.YS2021006)Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.
基金financial support of National Natural Science Foundation of China(72174196 and 71874193)the Open Fund of State Key Laboratory of Coal Resources and Safe Mining(SKLCRSM21KFA05)National Program for Support of Top-Notch Young Professionals.
文摘The promotion of deep decarbonization in the cement industry is crucial for mitigating global climate change,a key component of which is carbon capture,utilization,and storage(CCUS)technology.Despite its importance,there is a lack of empirical assessments of early opportunities for CCUS implementation in the cement sector.In this study,a comprehensive onshore and offshore source–sink matching optimization assessment framework for CCUS retrofitting in the cement industry,called the SSM-Cement framework,is proposed.The framework comprises four main modules:the cement plant suitability screening module,the storage site assessment module,the source–sink matching optimization model module,and the economic assessment module.By applying this framework to China,919 candidates are initially screened from 1132 existing cement plants.Further,603 CCUS-ready cement plants are identified,and are found to achieve a cumulative emission reduction of 18.5 Gt CO_(2) from 2030 to 2060 by meeting the CCUS feasibility conditions for constructing both onshore and offshore CO_(2) transportation routes.The levelized cost of cement(LCOC)is found to range from 30 to 96(mean 73)USD·(t cement)^(-1),while the levelized carbon avoidance cost(LCAC)ranges from^(-5) to 140(mean 88)USD·(t CO_(2))^(-1).The northeastern and northwestern regions of China are considered priority areas for CCUS implementation,with the LCAC concentrated in the range of 35 to 70 USD·(t CO_(2))^(-1).In addition to onshore storage of 15.8 Gt CO_(2) from 2030 to 2060,offshore storage would contribute 2.7 Gt of decarbonization for coastal cement plants,with comparable LCACs around 90 USD·(t CO_(2))^(-1).
基金Philosophy and Social Science Planning Projects in Yunnan Province,No.QN202428China Postdoctoral Science Foundation,No.2024M752918。
文摘Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.
基金funded by the Sichuan Science and Technology Program,Grant Nos.2024NSFSC0515,2024ZHCG0182 and MZGC20230013.
文摘To solve the challenges of connecting and coordinating multiple platforms in the automotive industry and to enhance collaboration among different participants,this research focuses on addressing the complex supply relationships in the automotive market,improving data sharing and interactions across various platforms,and achieving more detailed integration of data and operations.We propose a trust evaluation permission delegation method based on the automotive industry chain.The proposed method combines smart contracts with trust evaluation mechanisms,dynamically calculating the trust value of users based on the historical behavior of the delegated entity,network environment,and other factors to avoid malicious node attacks during the permission delegation process.We also introduce strict control over the cross-domain permission granting and revocation mechanisms to manage the delegation path,prevent information leakage caused by malicious node interception,and effectively protect data integrity and privacy.Experimental analysis shows that this method meets the realtime requirements of collaborative interaction in the automotive industry chain and provides a feasible solution to permission delegation issues in the automotive industry chain,offering dynamic flexibility in authorization and scalability compared to most existing solutions.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
文摘This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.
基金The APC was funded by Research Management Center, Multimedia University, Malaysia.
文摘Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.
文摘Taiwan,a Southeast Asian region,achieved rapid economic growth and the level of economic development it achieved in the 20th century,making it one of the countries and/or regions that created the Asian Miracle in the 1990s.Following the establishment of the People's Republic of China under the leadership of Mao,Chinese Nationalist Party leader Chiang Kai-shek established the Republic of China in Taiwan and established Taipei as its capital.Taiwan's automotive industry began with the establishment of a vehicle manufacturing company in 1953.Starting in the mid-1960s,automotive industry production began to increase,and with the new economic policies of the government from 1985 onwards,rapid production increases in the automotive industry accompanied the high economic growth rates.In addition,Taiwan Region of China automotive companies were able to shift their production to China in order to benefit from the rapid economic growth period in China in the 1980s.Thus,we can say that the rapidly growing Taiwan Region of China automotive industry came into question in the 1990s with all internal and external effects.Focusing on the historical development of the automotive industry is important in order to determine whether the development in the automotive industry is dependent on path.Today,we can say that Taiwan is one of the important automotive manufacturers.However,we can say that it is not one of the leading manufacturers.