High-resolution anoscopy(HRA) is a procedure where patients with an increased risk of anal cancer, like men who have sex with men, human immunodeficiency virus infected individuals, transplant patients and women with ...High-resolution anoscopy(HRA) is a procedure where patients with an increased risk of anal cancer, like men who have sex with men, human immunodeficiency virus infected individuals, transplant patients and women with a history of lower genital tract neoplasia, with abnormal anal cytology results, are submitted to anal and perianal visualization under magnification. This willallow for a better detection of anal high-grade lesions that can be treated, in an effort to prevent anal cancer. Anal cancer screening follows the same principles that cervical cancer screening. During this procedure, an anoscope is inserted and a colposcope is used to examine systematically the squamocolumnar junction, the transformation zone and the perianal skin. Initially the observation is done with no staining and then with the application of acetic acid and Lugol's iodine solution, allowing for better lesion identification and characterization. Any suspicious lesion seen should be carefully evaluated and biopsied. Without HRA only a small percentage of suspicious lesions are identified. High-grade lesions that are detected can be ablated under HRA. This is a challenging exam to perform, with a long learning curve and the number of clinicians performing it is limited, although the growing number of patients that need to been screened. Specific equipment is required, with these patients ideally been followed by a multidisciplinary team, in a reference centre. HRA remains unfamiliar for many gastroenterologists.展开更多
Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,w...Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.展开更多
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-...Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.展开更多
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co...High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.展开更多
The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on met...The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.展开更多
In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models incr...In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.展开更多
While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used imag...While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.展开更多
Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a hig...Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.展开更多
High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuse...High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.展开更多
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol...During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.展开更多
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulat...Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.展开更多
Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern...Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.展开更多
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me...Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.展开更多
This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercompute...This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.展开更多
AIM: To study a new imaging equipment, highresolution micro-endoscopy(HRME), in the diagnosis and pathological classification of colon polyps.METHODS: We selected 114 specimens of colon polyps, 30 of which were colon ...AIM: To study a new imaging equipment, highresolution micro-endoscopy(HRME), in the diagnosis and pathological classification of colon polyps.METHODS: We selected 114 specimens of colon polyps, 30 of which were colon polyps with known pathological types and 84 that were prospective polyp specimens; 10 normal colon mucosa specimens served as controls. We obtained images of 30 colon polyp specimens with known pathological types using HRME and analyzed the characteristics of these images to develop HRME diagnostic criteria for different pathological types of colon polyps. Based on these criteria, we performed a prospective study of 84 colon polyp specimens using HRME and compared the results with those of the pathological examination to evaluate the diagnostic value of HRME in the pathological classification of different types of colon polyps. RESULTS: In the 30 cases of known pathological type of colon polyp samples, there were 21 cases of adenomatous polyps, which comprised nine cases of tubular adenoma, seven cases of villous adenoma and five cases of mixed adenomas. The nine cases of non-adenomatous polyps included four cases of inflammatory polyps and five cases of hyperplastic polyps five. Ten cases of normal colonic mucosa were confirmed pathologically. In a prospective study of 84 cases using HRME, 23 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 18 cases as tubular adenoma, eight cases as villous adenoma and 24 cases as mixed adenomas. After pathological examination, 24 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 19 cases as tubular adenoma, eight cases as villous adenoma and 22 cases as mixed adenomas. Compared with the pathological examinations, the sensitivities, specificities, accuracies, and positive and negative predictive values of HRME in diagnosing inflammatory polyps(87.5%, 96.7%, 94.0%, 91.3% and 95.1%), hyperplastic polyps(72.7%, 95.9%, 92.9%, 72.7% and 95.9%), tubular adenomas(73.7%, 93.8%, 89.3%, 77.8% and 92.4%), villous adenomas(75.0%, 97.4%, 95.2%, 75.0% and 97.4%), and mixed adenomas(75.0%, 93.3%, 88.1%, 81.8% and 90.3%) were relatively high.CONCLUSION: HRME has a relatively high diagnostic value in the pathological classification of colon polyps. Thus, it may be an alternative to confocal microendoscopy in lower-resource or community-based settings.展开更多
Klinefelter syndrome (KS) is the set of symptoms that result from the presence of an extra X chromosome in males. Postnatal population-based KS screening will enable timely diagnosis of this common chromosomal disea...Klinefelter syndrome (KS) is the set of symptoms that result from the presence of an extra X chromosome in males. Postnatal population-based KS screening will enable timely diagnosis of this common chromosomal disease, providing the opportunity for early intervention and therapy at the time point when they are most effective and may prevent later symptoms or complications. Therefore, through this study, we introduced a simple high-resolution melting (HRM) assay for KS screening and evaluated its clinical sensitivity and specificity in three medical centers using 1373 clinical blood samples. The HRM assay utilized a single primer pair to simultaneously amplify specific regions in zinc finger protein, X-linked (ZFX) and zinc finger protein, Y-linked (ZFY). In cases of KS, the ratios of ZFX/ZFYare altered compared to those in normal males. As a result, the specific melting profiles differ and can be differentiated during data analysis. This HRM assay displayed high analytical specificity over a wide range of template DNA amounts (5 ng-50 ng) and reproducibility, high resolution for detecting KS mosaicism, and high clinical sensitivity (100%) and specificity (98.1%). Moreover, the HRM assay was rapid (2 h per run), inexpensive (0.2 USD per sample), easy to perform and automatic, and compatible with both whole blood samples and dried blood spots. Therefore, this HRM assay is an ideal postnatal population-based KS screening tool that can be used for different age groups.展开更多
When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positi...When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.展开更多
A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolu...A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.展开更多
This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature an...This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature and wind speed data.The whole atmosphere is divided into 64 vertical bins,and the profiles are constructed by the percentiles of the values in each vertical bin.Based on the percentile profiles(PPs),some objective criteria are developed to obtain the thresholds.Tibetan Plateau field data are used to validate the effectiveness of the method in the application of experimental data.The results show that the derived thresholds for 120 operational stations and 3 experimental stations are effective in detecting the gross errors,and those PPs can clearly and instantly illustrate the characteristics of a radiosonde variable and reveal the distribution of errors.展开更多
文摘High-resolution anoscopy(HRA) is a procedure where patients with an increased risk of anal cancer, like men who have sex with men, human immunodeficiency virus infected individuals, transplant patients and women with a history of lower genital tract neoplasia, with abnormal anal cytology results, are submitted to anal and perianal visualization under magnification. This willallow for a better detection of anal high-grade lesions that can be treated, in an effort to prevent anal cancer. Anal cancer screening follows the same principles that cervical cancer screening. During this procedure, an anoscope is inserted and a colposcope is used to examine systematically the squamocolumnar junction, the transformation zone and the perianal skin. Initially the observation is done with no staining and then with the application of acetic acid and Lugol's iodine solution, allowing for better lesion identification and characterization. Any suspicious lesion seen should be carefully evaluated and biopsied. Without HRA only a small percentage of suspicious lesions are identified. High-grade lesions that are detected can be ablated under HRA. This is a challenging exam to perform, with a long learning curve and the number of clinicians performing it is limited, although the growing number of patients that need to been screened. Specific equipment is required, with these patients ideally been followed by a multidisciplinary team, in a reference centre. HRA remains unfamiliar for many gastroenterologists.
基金funded by the National Natural Science Foundation of China(62273213,62472262,62572287)Natural Science Foundation of Shandong Province(ZR2024MF144)+1 种基金Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)Taishan Scholarship Construction Engineering.
文摘Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.
基金supported by the Natural Science Foundation of Hubei Provincial Department of Education(D20232101)Shandong Second Medical University 2024 Affiliated Hospital(Teaching Hospital)Scientific Research Development Fund Project(2024FYQ026)+3 种基金the innovative Research Programme of Xiangyang No.1 People’s Hospital(XYY2023ZY01)Faculty Development Grants of Xiangyang No.1 People’s Hospital Affiliated to Hubei University of Medicine(XYY2023D05)Joint supported by Hubei Provincial Natural Science Foundation and Xiangyang of China(2025AFD091)Traditional Chinese Medicine Scientific Research Project of Hubei Provincial Administration of Traditional Chinese Medicine(ZY2025D019).
文摘Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.
基金financial support from the National Natural Science Foundation of China(Grant No.61971201)。
文摘High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
基金supported by the National Natural Science Foundation of China(61772179)Hunan Provincial Natural Science Foundation of China(2022JJ50016,2023JJ50095)+1 种基金the Science and Technology Plan Project of Hunan Province(2016TP1020)Double First-Class University Project of Hunan Province(Xiangjiaotong[2018]469,[2020]248).
文摘The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.
基金The National Natural Science Foundation of China under contract No.42425606the Basic Scientific Fund for the National Public Research Institute of China(Shu-Xingbei Young Talent Program)under contract No.2023S01+1 种基金the Ocean Decade International Cooperation Center Scientific and Technological Cooperation Project under contract No.GHKJ2024005China-Korea Joint Ocean Research Center Project under contract Nos PI-20240101(China)and 20220407(Korea).
文摘In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.
文摘While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.
基金funded by the General Program of National Natural Science Foundation of China(Grant No.42377467).
文摘Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.
文摘High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.
基金Supported by the National Natural Science Foundation of China(U24B2031)National Key Research and Development Project(2018YFA0702504)"14th Five-Year Plan"Science and Technology Project of CNOOC(KJGG2022-0201)。
文摘During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
基金supported by the National Key Technologies R&D Program(Grant No. 2007BAC29B03)China-UK-Swiss Adaptingto Climate Change in China Project (ACCC)-Climate Sciencethe National Natural Science Foundation of China (Grant No. 40890054)
文摘Projections of future precipitation change over China are studied based on the output of a global AGCM, ECHAM5, with a high resolution of T319 (equivalent to 40 km). Evaluation of the model’s performance in simulating present-day precipitation shows encouraging results. The spatial distributions of both mean and extreme precipitation, especially the locations of main precipitation centers, are reproduced reasonably. The simulated annual cycle of precipitation is close to the observed. The performance of the model over eastern China is generally better than that over western China. A weakness of the model is the overestimation of precipitation over northern and western China. Analyses on the potential change in precipitation projected under the A1B scenario show that both annual mean precipitation intensity and extreme precipitation would increase significantly over southeastern China. The percentage increase in extreme precipitation is larger than that of mean precipitation. Meanwhile, decreases in mean and extreme precipitation are evident over the southern Tibetan Plateau. For precipitation days, extreme precipitation days are projected to increase over all of China. Both consecutive dry days over northern China and consecutive wet days over southern China would decrease.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 91738302 and 91838303]the National Science Fund for Distinguished Young Scholars[grant number 61825103]Thanks for the support of China Centre for Resources Satellite Data and Application(CRESDA).
文摘Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.
文摘Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110303)the National Basic Research Program of China (973Program, Grant Nos. 2012CB417203 and 2010CB950404)+1 种基金the National High Technology Research and Development Program of China (863 Program, Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant No. 41023002)
文摘This paper describes the model speed and model In/Out (I/O) efficiency of the high-resolution atmospheric general circulation model FAMIL (Finite- volume Atmospheric Model of IAP/LASG) at the National Supercomputer Center in Tianjin, China, on its Tianhe-lA supercomputer platform. A series of three- model-day simulations were carried out with standard Aqua Planet Experiment (APE) designed within FAMIL to obtain the time stamp for the calculation of model speed, simulation cost, and model 1/O efficiency. The results of the simulation demonstrate that FAMIL has remarkable scalability below 3456 and 6144 cores, and the lowest simulation costs are 1536 and 3456 cores for 12.5 km and 6.25 krn resolutions, respectively. Furthermore, FAMIL has excellent I/O scalability and an efficiency of more than 80% on 6 I/Os and more than 99% on 1536 I/Os.
基金Supported by Capital Clinical Characteristics Application Research(Z141107002514099)
文摘AIM: To study a new imaging equipment, highresolution micro-endoscopy(HRME), in the diagnosis and pathological classification of colon polyps.METHODS: We selected 114 specimens of colon polyps, 30 of which were colon polyps with known pathological types and 84 that were prospective polyp specimens; 10 normal colon mucosa specimens served as controls. We obtained images of 30 colon polyp specimens with known pathological types using HRME and analyzed the characteristics of these images to develop HRME diagnostic criteria for different pathological types of colon polyps. Based on these criteria, we performed a prospective study of 84 colon polyp specimens using HRME and compared the results with those of the pathological examination to evaluate the diagnostic value of HRME in the pathological classification of different types of colon polyps. RESULTS: In the 30 cases of known pathological type of colon polyp samples, there were 21 cases of adenomatous polyps, which comprised nine cases of tubular adenoma, seven cases of villous adenoma and five cases of mixed adenomas. The nine cases of non-adenomatous polyps included four cases of inflammatory polyps and five cases of hyperplastic polyps five. Ten cases of normal colonic mucosa were confirmed pathologically. In a prospective study of 84 cases using HRME, 23 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 18 cases as tubular adenoma, eight cases as villous adenoma and 24 cases as mixed adenomas. After pathological examination, 24 cases were diagnosed as inflammatory polyps, 11 cases as hyperplastic polyps, 19 cases as tubular adenoma, eight cases as villous adenoma and 22 cases as mixed adenomas. Compared with the pathological examinations, the sensitivities, specificities, accuracies, and positive and negative predictive values of HRME in diagnosing inflammatory polyps(87.5%, 96.7%, 94.0%, 91.3% and 95.1%), hyperplastic polyps(72.7%, 95.9%, 92.9%, 72.7% and 95.9%), tubular adenomas(73.7%, 93.8%, 89.3%, 77.8% and 92.4%), villous adenomas(75.0%, 97.4%, 95.2%, 75.0% and 97.4%), and mixed adenomas(75.0%, 93.3%, 88.1%, 81.8% and 90.3%) were relatively high.CONCLUSION: HRME has a relatively high diagnostic value in the pathological classification of colon polyps. Thus, it may be an alternative to confocal microendoscopy in lower-resource or community-based settings.
文摘Klinefelter syndrome (KS) is the set of symptoms that result from the presence of an extra X chromosome in males. Postnatal population-based KS screening will enable timely diagnosis of this common chromosomal disease, providing the opportunity for early intervention and therapy at the time point when they are most effective and may prevent later symptoms or complications. Therefore, through this study, we introduced a simple high-resolution melting (HRM) assay for KS screening and evaluated its clinical sensitivity and specificity in three medical centers using 1373 clinical blood samples. The HRM assay utilized a single primer pair to simultaneously amplify specific regions in zinc finger protein, X-linked (ZFX) and zinc finger protein, Y-linked (ZFY). In cases of KS, the ratios of ZFX/ZFYare altered compared to those in normal males. As a result, the specific melting profiles differ and can be differentiated during data analysis. This HRM assay displayed high analytical specificity over a wide range of template DNA amounts (5 ng-50 ng) and reproducibility, high resolution for detecting KS mosaicism, and high clinical sensitivity (100%) and specificity (98.1%). Moreover, the HRM assay was rapid (2 h per run), inexpensive (0.2 USD per sample), easy to perform and automatic, and compatible with both whole blood samples and dried blood spots. Therefore, this HRM assay is an ideal postnatal population-based KS screening tool that can be used for different age groups.
基金supported by the National Scientific Foundation of China (Grant no. 41506085)the Open Foundation of the Key Laboratory of Gas Hydrate, Ministry of Land and Resources, China (Grant no. SHW [2014]-DX-12)the China Geological Survey Project (Grant no. DD20160213)
文摘When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.
基金This study is supported by the Key Program of Chinese Academy of Sciences KZCX3 SW-221the National Natural Science Foundation of China(Grant No.40233033 and 40221503).
文摘A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.
基金supported by the National Innovation Project for Meteorological Science and Technology grant number CMAGGTD003-5the National Key R&D Program of China grant number2017YFC1501801。
文摘This study proposes a method to derive the climatological limit thresholds that can be used in an operational/historical quality control procedure for Chinese high vertical resolution(5–10 m)radiosonde temperature and wind speed data.The whole atmosphere is divided into 64 vertical bins,and the profiles are constructed by the percentiles of the values in each vertical bin.Based on the percentile profiles(PPs),some objective criteria are developed to obtain the thresholds.Tibetan Plateau field data are used to validate the effectiveness of the method in the application of experimental data.The results show that the derived thresholds for 120 operational stations and 3 experimental stations are effective in detecting the gross errors,and those PPs can clearly and instantly illustrate the characteristics of a radiosonde variable and reveal the distribution of errors.