A high-nuclear Co-V-O cluster was firstly isolated by lacunary polyoxoanion, resulting in the high-nuclear mixed metal-oxo cluster-containing polyoxometalate (POM), K4Na28[{Co4(O-H)3(VO4)}4(SiW9O34)4]· 66H2O (1)....A high-nuclear Co-V-O cluster was firstly isolated by lacunary polyoxoanion, resulting in the high-nuclear mixed metal-oxo cluster-containing polyoxometalate (POM), K4Na28[{Co4(O-H)3(VO4)}4(SiW9O34)4]· 66H2O (1). In 1, the{Co4(O-H)3(VO4)}4{Co16-V4}core, composed of a{Co4O4}cubane, four{Co4(OH)3}qusi-cubanes and four VO4 units, was stabilized by four lacunary A-α-{SiW9O34} units. Photocatalytic study reveals that 1 exhibits excellent photocatalytic activity for CO2-to-CO conversion with high selectivity under visible light irradiation. The turnover number (TON) and turnover frequency (TOF) reaches as high as 10492 and 0.29 s^-1, respectively. Compound 1 represents the first high nuclear TM cluster-containing POM (TM=transition-metal) with efficient visible light catalytic activity for CO2 reduction, and its photocatalytic activity is much higher than those of most reported molecular catalysts. Photoluminescence spectroscopy study reveals that photoexcitation of Ru-photosensitizer is followed by an efficient electron transfer to POMs to reduce CO2.展开更多
基金financial support from Science and Technology Research Foundation of the Thirteenth Five Years of Jilin Educational Committee (No. JJKH20170605KJ)
文摘A high-nuclear Co-V-O cluster was firstly isolated by lacunary polyoxoanion, resulting in the high-nuclear mixed metal-oxo cluster-containing polyoxometalate (POM), K4Na28[{Co4(O-H)3(VO4)}4(SiW9O34)4]· 66H2O (1). In 1, the{Co4(O-H)3(VO4)}4{Co16-V4}core, composed of a{Co4O4}cubane, four{Co4(OH)3}qusi-cubanes and four VO4 units, was stabilized by four lacunary A-α-{SiW9O34} units. Photocatalytic study reveals that 1 exhibits excellent photocatalytic activity for CO2-to-CO conversion with high selectivity under visible light irradiation. The turnover number (TON) and turnover frequency (TOF) reaches as high as 10492 and 0.29 s^-1, respectively. Compound 1 represents the first high nuclear TM cluster-containing POM (TM=transition-metal) with efficient visible light catalytic activity for CO2 reduction, and its photocatalytic activity is much higher than those of most reported molecular catalysts. Photoluminescence spectroscopy study reveals that photoexcitation of Ru-photosensitizer is followed by an efficient electron transfer to POMs to reduce CO2.