The addition of vanadium substantially enhances the strength of the high-nitrogen austenitic stainless steel(HNASS),while maintaining excellent ductility and pitting corrosion resistance.The effects of vanadium microa...The addition of vanadium substantially enhances the strength of the high-nitrogen austenitic stainless steel(HNASS),while maintaining excellent ductility and pitting corrosion resistance.The effects of vanadium microalloying on the microstructure,mechanical properties,and pitting resistance of HNASS were systematically analyzed with a focus on the role of VN during the pitting process.The results suggest that vanadium promoted the precipitation of VN,contributing to grain boundary pinning and grain refinement.As vanadium content increased,the number of precipitates rose,and the average grain size decreased.At lower vanadium content(0-0.2 wt.%),the strength of the material was significantly reinforced with increasing vanadium content,while maintaining excellent ductility and pitting resistance.However,when the vanadium content reached 0.3-0.4 wt.%,precipitates demonstrated a substantially increased number and coarsened,accompanied by the formation of numerous dislocations around the precipitates.This brought about further strength reinforcement but a marked decline in ductility and pitting resistance.Additionally,pitting corrosion was initiated at the matrix-VN interface.Compared to the matrix,VN exhibited higher reactivity and preferentially reacted with Cl−ions,provoking dissolution.However,NH4+generated during the dissolution of VN facilitated repassivation of the material,suppressing further pitting propagation.展开更多
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-...This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.展开更多
The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted z...The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted zone of different heat-treated samples were investigated by X-ray diffraction, electron probe microanalyzer analysis, and trans- mission electron microscopy. The corrosion resistance was evaluated using electrochemical measurements, and the analysis of passive film was carded out by X-ray photoelectron spectroscopy. The results indicated that the volume fraction of precipitates decreased, and the homogeneity of elements was improved with increasing austenitizing temperature. The degree of Cr-depleted zone around coarse M23C6 was severer than that around M2N, and pitting corrosion initiated preferentially around M23C6. The corrosion resistance of the samples increased with the austenitizing temperature. With the increase in austenitizing temperature, the passive film was thickened and Cr(III)cr2O3 in the inner layer of passive film was enriched, which enhanced the corrosion resistance of the steel. The higher content of nitrogen in solid solution at higher austenitizing temperature contributed to the increased intensity of CrN and NH3, leading to the increase in pH value in the pit, and promoting the repassivation of 55Cr18Mo1N steel.展开更多
Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was ...Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was found that the microstructure of the billet was heterogeneous across the billet thickness, resulting in the difference in the mechanical properties due to the different deformation conditions. A relatively low strength, high uniform elongation, and high work- hardening rate for the samples at the bottom of the billet was achieved in comparison with those processed at the top. Meanwhile, it was observed that the density of deformation twins increased with the content of N; accordingly, the strength and elongation of the alloys increase with the content of N, resulting in a good strength-ductility combination.展开更多
Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE tre...Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.展开更多
Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-m...Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.展开更多
The fretting wear performance of high-nitrogen stainless bearing steel(40Cr15Mo2VN)under lubrication conditions was researched.Lithium-based grease was preparedusing MoS2 and carbon nanotubes(CNTs)as additives.AISI 52...The fretting wear performance of high-nitrogen stainless bearing steel(40Cr15Mo2VN)under lubrication conditions was researched.Lithium-based grease was preparedusing MoS2 and carbon nanotubes(CNTs)as additives.AISI 52100 steel ball was used in four-ball test to evaluate the extreme pressure property and wear resistance of grease.After four-ball test,the grease adding 0.8 mass%MoS2 and 0.8 mass%CNTs,respectively,was chosen and used for fretting test.AISI 52100 ball and 40Cr15Mo2VN steel disc were used as the upper and lower samples for fretting test.The results showed that wear power consumption increased with the increase in both sliding velocity and contact stress.When initial contact stress was 2.047 GPa,the main wear mechanisms were abrasive wear and plastic deformation as the velocity increased 0.028 to 0.112 m/s.When the velocity was 0.028 m/s,the main wear mechanisms changed abrasive wear to adhesion wear and finally to abrasive wear and adhesion wear as the initial contact stress increased 1.788 to 2.579 GPa.The volume loss grew sharply becaof the changes in wear mechanisms.In this condition,the volume loss growth rate can be divided into three regions according to different wear power consumption ranges corresponding to different wear mechanisms.展开更多
The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels(NFHNSSs) were investigated to study the effect of cold deformation on its dry wea...The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels(NFHNSSs) were investigated to study the effect of cold deformation on its dry wear resistance as well as corrosion–wear behaviors in distilled water and Hank's solution. The results indicated that NFHNSS was characterized by stable austenite and possessed excellent work-hardening capacity; due to increasing cold deformation,the corrosion resistance just decreased very slightly and the dry wear rate decreased initially but subsequently increased,while the corrosion–wear resistance was improved monotonically in both distilled water and Hank's solution in spite of the presence of corrosive ions. The friction coefficients for different cold-rolled NFHNSSs were very close under the same lubricating condition,but they were the largest in distilled water compared to that in dry wear tests and Hank's solution.展开更多
The objective of this study was to examine the effects of addition of inoculant to high-nitrogen (N) fertilized timothy on fermentation, nutritive value, and feed intake of silage. The silage of timothy cultivated wit...The objective of this study was to examine the effects of addition of inoculant to high-nitrogen (N) fertilized timothy on fermentation, nutritive value, and feed intake of silage. The silage of timothy cultivated with a N fertilizer rate at two levels (high level (H), standard level (S)) was prepared with (SI, HI) or without (SC, HC) an inoculants. The CP content of H increased by 38 g·kg-1 DM compared with that of S, and the WSC and ADF contents decreased compared with those of S. Regarding the fermentation of silage, the pH and NH3-N ratio was significantly lower in the silage with inoculant (SI and HI), showing improvement of the fermentation compared with those of the silage without the addition (SC and HC). The CP content was significantly higher in HC and HI than in SC and SI, and the NDF content was the lowest in HI among the four treatments. The CP digestibility of HC and HI was significantly higher than those of SC and SI. The EE digestibility of SI was significantly higher than that of SC, and that of HI was significantly higher than that of HC. The DCP contents were significantly higher in HC and HI than in SC and SI. The TDN content was the lowest in SC and highest in HI. The DCP intakes of HC and HI were significantly higher than those of SC and SI. When the N fertilizer rate was increased, the DCP content and DCP intake of the silage increased, and the addition of inoculant improved the fermentation and increased the TDN content.展开更多
Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scan- ning ele...Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scan- ning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The experimental results show that precipitation displays a discontinuous cellular way and the precipitates are identified as Cr2N in Fe-18Cr-18Mn-0.63N steel. The addition of Mo makes precipitation occur not only at the grain boundary but also inside the grain and precipitation also displays discontinuous cellular way. The precipitates at the grain boundary and in the cell are both identified as Cr2N phase and X phase and the precipitates inside the grain are identified as X phase in Fe-18Cr-18Mn-2Mo-0.69N steel. The nucleations of X phase and Cr2N phase at the grain boundary are both governed by the diffusion of Cr atoms. The formation and growth of X phase inside the grain are induced by the impoverishment of N atoms with increasing aging time.展开更多
The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microsco...The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ.展开更多
Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special g...Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.展开更多
Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grai...Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.展开更多
Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography info...Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography information of precipitates in Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel during isothermal aging at 800 ℃ after austenization was investigated using optical microscopy(OM),and transmission electron microscopy(TEM) with energy distribution spectrum(EDS).The experimental results show that three precipitates,(Cr,Fe,Mn)2(N,C),(Cr,Fe,Mn)23(C,N)6 and σ phase exist in this steel,which is consistent with the thermodynamic calculation,indicating that thermodynamic calculation can provide instructions for alloy composition design,heat treatment and prediction of precipitation sequence in Fe-18Cr-12Mn-0.04C-N system.展开更多
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure ...This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6 × 1200), and the highest nitrogen concentration reaches approximately 121-1257 ppm calculated by infrared absorption spectra. The synthesis conditions are about 5.5 CPa and 1240-1300 ℃. The growth behaviour of diamond with high-nitrogen concentration is investigated in detail. The results show that, with increasing the content of NaN3 added in synthesis system, the width of synthesis temperature region for growth high-quality diamonds becomes narrower, and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure, the crystal growth rate is slowed down, nevertheless, the nitrogen concentration doped in synthetic diamond increases.展开更多
The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investig...The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.展开更多
For gastrointestinal anastomosis,metallic biodegradable staples have a broad application potential.However,both magnesium and zinc alloys have relatively low strength to withstand the repeated peristalsis of the gastr...For gastrointestinal anastomosis,metallic biodegradable staples have a broad application potential.However,both magnesium and zinc alloys have relatively low strength to withstand the repeated peristalsis of the gastrointestinal tract.In this study,we developed a novel kind of biodegradable high-nitrogen iron(HN–Fe)alloy wires(0.23 mm),which were fabricated into the staples.The tensile results showed that the ultimate tensile strength and elongation of HN–Fe wires were 1023.2 MPa and 51.0%,respectively,which was much higher than those of other biodegradable wires.The degradation rate in vitro of HN–Fe wires was slightly higher than that of pure Fe wires.After 28 days of immersion,the tensile strength of HN–Fe wires remained not less than 240 MPa,meeting the clinical requirements.Furthermore,sixteen rabbits were enrolled to conduct a comparison experiment using HN–Fe and clinical Ti staples for gastroanastomosis.After 6 months of implantation,a homogeneous degradation product layer on HN–Fe staples was observed and no fracture occurred.The degradation rate of HN–Fe staples in vivo was significantly higher than that in vitro,and they were expected to be completely degraded in 2 years.Meanwhile,both benign cutting and closure performance of HN–Fe staples ensured that all the animals did not experience hemorrhage and anastomotic fistula during the observation.The anastomosis site healed without histopathological change,inflammatory reaction and abnormal blood routine and biochemistry,demonstrating good biocompatibility of HN–Fe staples.Thereby,the favorable performance makes the HN–Fe staples developed in this work a promising candidate for gastrointestinal anastomosis.展开更多
基金founded by National Natural Science Foundations of China(Nos.52231003,52201084,and U21A20113)Major Program(JD)of Hubei Province(No.2023BAA019)+1 种基金Natural Science Foundation of Guangdong Province(No.2024A1515011022)Guangdong Province Basic and Applied Basic Research Fund Offshore Wind Power Joint Fund(No.2023B1515250006).
文摘The addition of vanadium substantially enhances the strength of the high-nitrogen austenitic stainless steel(HNASS),while maintaining excellent ductility and pitting corrosion resistance.The effects of vanadium microalloying on the microstructure,mechanical properties,and pitting resistance of HNASS were systematically analyzed with a focus on the role of VN during the pitting process.The results suggest that vanadium promoted the precipitation of VN,contributing to grain boundary pinning and grain refinement.As vanadium content increased,the number of precipitates rose,and the average grain size decreased.At lower vanadium content(0-0.2 wt.%),the strength of the material was significantly reinforced with increasing vanadium content,while maintaining excellent ductility and pitting resistance.However,when the vanadium content reached 0.3-0.4 wt.%,precipitates demonstrated a substantially increased number and coarsened,accompanied by the formation of numerous dislocations around the precipitates.This brought about further strength reinforcement but a marked decline in ductility and pitting resistance.Additionally,pitting corrosion was initiated at the matrix-VN interface.Compared to the matrix,VN exhibited higher reactivity and preferentially reacted with Cl−ions,provoking dissolution.However,NH4+generated during the dissolution of VN facilitated repassivation of the material,suppressing further pitting propagation.
文摘This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.
基金financially supported by National Natural Science Foundation of China (Grant Nos.51304041, 51434004 and U1435205)Fundamental Research Funds for the Central Universities (Grant No. N150204007)
文摘The influence of austenitizing temperature on the microstructure and corrosion resistance of 55Cr18MolVN high-nitrogen plastic mould steel was investigated. The microstructure, elemental distribution and Cr-depleted zone of different heat-treated samples were investigated by X-ray diffraction, electron probe microanalyzer analysis, and trans- mission electron microscopy. The corrosion resistance was evaluated using electrochemical measurements, and the analysis of passive film was carded out by X-ray photoelectron spectroscopy. The results indicated that the volume fraction of precipitates decreased, and the homogeneity of elements was improved with increasing austenitizing temperature. The degree of Cr-depleted zone around coarse M23C6 was severer than that around M2N, and pitting corrosion initiated preferentially around M23C6. The corrosion resistance of the samples increased with the austenitizing temperature. With the increase in austenitizing temperature, the passive film was thickened and Cr(III)cr2O3 in the inner layer of passive film was enriched, which enhanced the corrosion resistance of the steel. The higher content of nitrogen in solid solution at higher austenitizing temperature contributed to the increased intensity of CrN and NH3, leading to the increase in pH value in the pit, and promoting the repassivation of 55Cr18Mo1N steel.
基金The National Natural Science Foundation of China(NSFC)under Grant Nos.5130117951331007+1 种基金31370976financially supported this work
文摘Three high-nitrogen stainless steels with different N contents were successfully processed by equal-channel angular pressing for one pass, and their microstructures and mechanical properties were investigated. It was found that the microstructure of the billet was heterogeneous across the billet thickness, resulting in the difference in the mechanical properties due to the different deformation conditions. A relatively low strength, high uniform elongation, and high work- hardening rate for the samples at the bottom of the billet was achieved in comparison with those processed at the top. Meanwhile, it was observed that the density of deformation twins increased with the content of N; accordingly, the strength and elongation of the alloys increase with the content of N, resulting in a good strength-ductility combination.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 51571058)。
文摘Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.
文摘Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.
文摘The fretting wear performance of high-nitrogen stainless bearing steel(40Cr15Mo2VN)under lubrication conditions was researched.Lithium-based grease was preparedusing MoS2 and carbon nanotubes(CNTs)as additives.AISI 52100 steel ball was used in four-ball test to evaluate the extreme pressure property and wear resistance of grease.After four-ball test,the grease adding 0.8 mass%MoS2 and 0.8 mass%CNTs,respectively,was chosen and used for fretting test.AISI 52100 ball and 40Cr15Mo2VN steel disc were used as the upper and lower samples for fretting test.The results showed that wear power consumption increased with the increase in both sliding velocity and contact stress.When initial contact stress was 2.047 GPa,the main wear mechanisms were abrasive wear and plastic deformation as the velocity increased 0.028 to 0.112 m/s.When the velocity was 0.028 m/s,the main wear mechanisms changed abrasive wear to adhesion wear and finally to abrasive wear and adhesion wear as the initial contact stress increased 1.788 to 2.579 GPa.The volume loss grew sharply becaof the changes in wear mechanisms.In this condition,the volume loss growth rate can be divided into three regions according to different wear power consumption ranges corresponding to different wear mechanisms.
基金supported by the National Natural Science Foundation of China(No.31370976)the National Basic Research Program of China(No.2012CB619101)
文摘The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels(NFHNSSs) were investigated to study the effect of cold deformation on its dry wear resistance as well as corrosion–wear behaviors in distilled water and Hank's solution. The results indicated that NFHNSS was characterized by stable austenite and possessed excellent work-hardening capacity; due to increasing cold deformation,the corrosion resistance just decreased very slightly and the dry wear rate decreased initially but subsequently increased,while the corrosion–wear resistance was improved monotonically in both distilled water and Hank's solution in spite of the presence of corrosive ions. The friction coefficients for different cold-rolled NFHNSSs were very close under the same lubricating condition,but they were the largest in distilled water compared to that in dry wear tests and Hank's solution.
文摘The objective of this study was to examine the effects of addition of inoculant to high-nitrogen (N) fertilized timothy on fermentation, nutritive value, and feed intake of silage. The silage of timothy cultivated with a N fertilizer rate at two levels (high level (H), standard level (S)) was prepared with (SI, HI) or without (SC, HC) an inoculants. The CP content of H increased by 38 g·kg-1 DM compared with that of S, and the WSC and ADF contents decreased compared with those of S. Regarding the fermentation of silage, the pH and NH3-N ratio was significantly lower in the silage with inoculant (SI and HI), showing improvement of the fermentation compared with those of the silage without the addition (SC and HC). The CP content was significantly higher in HC and HI than in SC and SI, and the NDF content was the lowest in HI among the four treatments. The CP digestibility of HC and HI was significantly higher than those of SC and SI. The EE digestibility of SI was significantly higher than that of SC, and that of HI was significantly higher than that of HC. The DCP contents were significantly higher in HC and HI than in SC and SI. The TDN content was the lowest in SC and highest in HI. The DCP intakes of HC and HI were significantly higher than those of SC and SI. When the N fertilizer rate was increased, the DCP content and DCP intake of the silage increased, and the addition of inoculant improved the fermentation and increased the TDN content.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0713the Fundamental Research Funds for the Central Universities under Grant No. 90305001+1 种基金the China Postdoctoral Science Foundation Funded Project under Grant No. 20090461186the Project of Department of Science and Technology of Liaoning Province Government under Grant No.2007221007
文摘Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scan- ning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The experimental results show that precipitation displays a discontinuous cellular way and the precipitates are identified as Cr2N in Fe-18Cr-18Mn-0.63N steel. The addition of Mo makes precipitation occur not only at the grain boundary but also inside the grain and precipitation also displays discontinuous cellular way. The precipitates at the grain boundary and in the cell are both identified as Cr2N phase and X phase and the precipitates inside the grain are identified as X phase in Fe-18Cr-18Mn-2Mo-0.69N steel. The nucleations of X phase and Cr2N phase at the grain boundary are both governed by the diffusion of Cr atoms. The formation and growth of X phase inside the grain are induced by the impoverishment of N atoms with increasing aging time.
基金supported by the Key Programme of National Natural Science Foundation of China(No.50534010)the National Key Basic Research and Development Programme of China(No.2004CB619103).
文摘The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy ( OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a = 0.4752nm and c = 0.4429nm, and the orientation relationship between the M2V precipitates and austenite determined from the SADP is [01^-10]M2N//[101]γ, [2^-1^-10]M2N//[010]γ.
基金supported by National Natural Science Foundation of China(Nos.51201027 and 51271054)Fundamental Research Funds for the Central Universities of China(Nos.N110105001,N120405001 and N120505001)
文摘Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.
基金financially supported by the National Key Research and Development Program of China(2016YFD0100502)the National Natural Science Foundation of China(31171773)
文摘Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.
基金This work is financially supported by Key Program of the National Natural Science Foundation of China( No50534010)National Program on Key Basic Research Project ( No2004CB619103)
文摘Vertical section of Fe-18Cr-12Mn-0.04C-N system phase diagram varying with nitrogen content at 1×105 Pa was calculated using Thermo-Calc software and thermodynamic database.The morphology and crystallography information of precipitates in Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel during isothermal aging at 800 ℃ after austenization was investigated using optical microscopy(OM),and transmission electron microscopy(TEM) with energy distribution spectrum(EDS).The experimental results show that three precipitates,(Cr,Fe,Mn)2(N,C),(Cr,Fe,Mn)23(C,N)6 and σ phase exist in this steel,which is consistent with the thermodynamic calculation,indicating that thermodynamic calculation can provide instructions for alloy composition design,heat treatment and prediction of precipitation sequence in Fe-18Cr-12Mn-0.04C-N system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50572032)
文摘This paper reprots that with Ni-based catalyst/solvent and with a dopant of NAN3, large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6 × 1200), and the highest nitrogen concentration reaches approximately 121-1257 ppm calculated by infrared absorption spectra. The synthesis conditions are about 5.5 CPa and 1240-1300 ℃. The growth behaviour of diamond with high-nitrogen concentration is investigated in detail. The results show that, with increasing the content of NaN3 added in synthesis system, the width of synthesis temperature region for growth high-quality diamonds becomes narrower, and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure, the crystal growth rate is slowed down, nevertheless, the nitrogen concentration doped in synthetic diamond increases.
基金Funded by of Liaoning Science and Technology Bureau(No.2007221007)
文摘The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test, micro hardness test, and Transmission Electron Microscope (TEM). The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃, while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃. Annealing temperature had stronger effect on mechanical properties than annealing time. TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min, but the size and density of precipitates had no noticeable change with annealing temperature and time. Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min, and its scale increased with annealing temperature. Nano-sized annealing twins were observed. The mechanisms that controlled the mechanical behaviors of the steel were discussed.
基金support from National Natural Science Foundation of China(No.82272099,51971222 and 51801220)Construction Project of Liaoning Medical Imaging and Interventional Medical Engineering Research Center(Grant No.18-006-9-01),STS program(No.20201600200042)+1 种基金DongGuan Innovative Research Team Program(2020607134012)Basic Applied Research Program of Liaoning Province of China(No.2022020347-JH2/1013,2023JH26/103000016).
文摘For gastrointestinal anastomosis,metallic biodegradable staples have a broad application potential.However,both magnesium and zinc alloys have relatively low strength to withstand the repeated peristalsis of the gastrointestinal tract.In this study,we developed a novel kind of biodegradable high-nitrogen iron(HN–Fe)alloy wires(0.23 mm),which were fabricated into the staples.The tensile results showed that the ultimate tensile strength and elongation of HN–Fe wires were 1023.2 MPa and 51.0%,respectively,which was much higher than those of other biodegradable wires.The degradation rate in vitro of HN–Fe wires was slightly higher than that of pure Fe wires.After 28 days of immersion,the tensile strength of HN–Fe wires remained not less than 240 MPa,meeting the clinical requirements.Furthermore,sixteen rabbits were enrolled to conduct a comparison experiment using HN–Fe and clinical Ti staples for gastroanastomosis.After 6 months of implantation,a homogeneous degradation product layer on HN–Fe staples was observed and no fracture occurred.The degradation rate of HN–Fe staples in vivo was significantly higher than that in vitro,and they were expected to be completely degraded in 2 years.Meanwhile,both benign cutting and closure performance of HN–Fe staples ensured that all the animals did not experience hemorrhage and anastomotic fistula during the observation.The anastomosis site healed without histopathological change,inflammatory reaction and abnormal blood routine and biochemistry,demonstrating good biocompatibility of HN–Fe staples.Thereby,the favorable performance makes the HN–Fe staples developed in this work a promising candidate for gastrointestinal anastomosis.