This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the casca...This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of rnidspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.展开更多
In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex ge...In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.展开更多
Axial overlap(AO)and percent pitch(PP)are considered as key position configuration parameters that affect the tandem cascade performance.The objective of the current study is to investigate the optimal design criteria...Axial overlap(AO)and percent pitch(PP)are considered as key position configuration parameters that affect the tandem cascade performance.The objective of the current study is to investigate the optimal design criteria for these two parameters in tandem cascades of subsonic highly-loaded two-dimensional compressors.Before that,the influence mechanisms of AO and PP are explored separately.Research results show that higher PP is beneficial for decreasing rear blade(RB)load,but an invalidity of gap flow occurs when it approaches 1.The change in AO has an influence on the adverse pressure gradient of the front blade(FB),and it also affects the gap flow strength and FB wake development.Then,the optimal design criteria for AO and PP are obtained in a large design space,which clarifies the matching relationship of the two parameters at different operating conditions.The best global range of AO is about-0.05 to 0.05 while PP is between 0.85 to 0.92,and PP should be smaller to avoid performance degradation as AO increases.According to the fault tolerance in practical applications,PP should be closer to the lower bound to ensure that the deterioration boundary is wide enough.展开更多
To predict stall and surge in advance that make the aero-engine compressor operatesafely,a stall prediction model based on deep learning theory is established in the current study.The Long Short-Term Memory(LSTM)origi...To predict stall and surge in advance that make the aero-engine compressor operatesafely,a stall prediction model based on deep learning theory is established in the current study.The Long Short-Term Memory(LSTM)originating from the recurrent neural network is used,and a set of measured dynamic pressure datasets including the stall process is used to learn whatdetermines the weight of neural network nodes.Subsequently,the structure and function hyperpa-rameters in the model are deeply optimized,and a set of measured pressure data is used to verify theprediction effects of the model.On this basis of the above good predictive capability,stall in low-and high-speed compressor are predicted by using the established model.When a period of non-stallpressure data is used as input in the model,the model can quickly complete the prediction of sub-sequent time series data through the self-learning and prediction mechanism.Comparison with thereal-time measured pressure data demonstrates that the starting point of the predicted stall is basi-cally the same as that of the measured stall,and the stall can be predicted more than 1 s in advanceso that the occurrence of stall can be avoided.The model of stall prediction in the current study canmake up for the uncertainty of threshold selection of the existing stall warning methods based onmeasured data signal processing.It has a great application potential to predict the stall occurrenceof aero-engine compressor in advance and avoid the accidents.展开更多
Two international standards,ISO 18501:2025,Performance rating of positive displacement refrigerant compressor,and ISO 18483:2025,Performance rating of centrifugal refrigerant compressor,were released at an event held ...Two international standards,ISO 18501:2025,Performance rating of positive displacement refrigerant compressor,and ISO 18483:2025,Performance rating of centrifugal refrigerant compressor,were released at an event held by GREE and Hefei General Machinery Research Institute Co.,Ltd.in Zhuhai,South China’s Guangdong province on June 12.展开更多
Unstable operating conditions such as surge could cause damage to both aerodynamic performance and structural integrity of a compression system.This paper addresses the critical issue of aerodynamic instability in com...Unstable operating conditions such as surge could cause damage to both aerodynamic performance and structural integrity of a compression system.This paper addresses the critical issue of aerodynamic instability in compressor design,particularly focusing on an axial-centrifugal combined compressor,a widely used yet underexplored configuration.An experimental investigation was conducted on a three-stage axial and one-stage centrifugal compressor(3A1C),using two pipe systems and employing fast-responding transducers to capture the dynamic instability process from choke condition to deep surge.Results reveal that at the design speed,3A1C enters deep surge directly,whereas at off-design speeds,it experiences rotating stall and mild surge across a wide mass flow range.Some special instability features in the combined compressor can be found in the steady state map and dynamic process.The characteristic curve of the first axial stage keeps a positive slope during the whole mass flow range at an off-design speed.The first stage could work stably on the stall characteristic curve because the centrifugal stage has stronger pressurization and plays a dominant role in global aerodynamic instability.Besides,rotating instability occurs at the first rotor tip and disappears as the back pressure increases,which is also rarely seen in a single-axial compressor.This is also related to the strong pressurization of the centrifugal stage.The findings of this paper will contribute to the understanding of aerodynamic instabilities in combined compressors.展开更多
Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual ...Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual inspection depends strongly on operator experience,while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines.These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes.This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process.The diagnostic approach leverages Mel-frequency cepstral coefficients(MFCC),and shorttime Fourier transform(STFT)parameters to capture the rotational frequency and harmonic characteristics of the scroll compressor.These parameters enable the extraction of defect-related features even in the presence of background noise.A convolutional neural network(CNN)model was constructed using MFCCs and spectrograms as image inputs.The proposed method was validated using acoustic data collected from compressors operated at a fixed rotational speed under real manufacturing process.The method identified normal operation and three defect types.These results demonstrate the applicability of this method in noise-prone manufacturing environments and suggest its potential for improving product quality,manufacturing reliability and productivity.展开更多
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical...With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.展开更多
The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different R...The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different Reynolds numbers are obtained.The results indicate that the compressor efficiency decreases when the Reynolds number decreases.Based on the test results,reasonable correlations between the Reynolds number and compressor efficiency for each of the three compressors are obtained.The comparison between the test result-deduced correlations and Wassell correlations indicates that the effects of Reynolds number on the efficiency predicted by the Wassell correlations are less than those obtained by the test result-deduced correlations.Owing to the complex loss models and flow behavior in highly-loaded multi-stage compressors,additional influence factors,including the tip clearance and the compressor inlet duct design,should be considered for performance correlations.Nevertheless,the Wassell correlations are valid for the tendency prediction of performance changes relating to the Reynolds number,while accurate correlations still largely depend on the specific test results.展开更多
To meet the demand for miniaturized,compact,high-reliability,and long-life cryocoolers in small satellite platforms,the development of a linear Stirling cryocooler has been undertaken.Computational Fluid Dynamics(CFD)...To meet the demand for miniaturized,compact,high-reliability,and long-life cryocoolers in small satellite platforms,the development of a linear Stirling cryocooler has been undertaken.Computational Fluid Dynamics(CFD)numerical simulation software was used to conduct simulation analyses,verifying the impact of porous media channel layout,eccentricity,viscous resistance coefficient of the porous media,and piston position on the designed aerostatic bearing piston employing self-supplied gas bearing technology.The calculation results indicate that both the aerostatic force and leakage increase synchronously with eccentricity,while the two designed gas lift channel layouts are capable of providing sufficient load-bearing capacity while ensuring minimal leakage.Through calculations,it was determined that the viscous resistance coefficient of the porous media material,used as a throttling mechanism,is most suitable within the range of 81011 to 810131/m2.When studying the piston position,it was found that××due to the influence of the gas film length,the aerostatic force gradually increases as the piston moves from the maximum compression stroke state to the maximum low-pressure stroke state.To validate combining simulation with experimental platform testing,a support fixture platform for testing the load-bearing capacity of the gas bearings was independently constructed.The development of the aerostatic bearing piston prototype was completed,and performance tests were conducted,confirming that the trend of aerostatic force variation with gas film length is consistent with calculations.Additionally,it was verified that under the two aerostatic channel layouts,the aerostatic force closely matches the calculated values.展开更多
The increasing performance demands of modern aero engines necessitate the integrated design of compressor transition ducts with upstream components to reduce the axial length of the engine.However,this design approach...The increasing performance demands of modern aero engines necessitate the integrated design of compressor transition ducts with upstream components to reduce the axial length of the engine.However,this design approach narrows the spacing between the stator and the strut,making traditional research on transition ducts only with struts unsuitable.The numerical results and experimental oil flow visualization results were utilized to reconstruct the three-dimensional flow structures in the stator passages under various operating conditions.Additionally,numerical methods were employed to analyze the mechanisms of the strut's effect on the upstream stator in an aggressive transition duct.The results show that the strut potential field increases the load on the upstream stator,leading to severe blade surface separation and corner separation/stall,and redistributes the inflow angle of the upstream stators circumferentially,resulting in significant differences in the flow structures within the stator passages on both sides.The separation flows within the stator passages mainly manifest in five types:pressure surface separation vortex,suction surface concentrated shedding vortex,suction surface separation vortex,suction surface-corner stall separation vortex,and suction surface separation vortex pair.Under different operating conditions,the separation flows within the stator passages are always composed of a part of these five types or a transitional state between two of them.展开更多
In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential f...In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential for enhancing the performance of such systems.This study examines the main sCO_(2) compressor from Sandia Laboratory,utilizing entropy production theory to elucidate the sources and distribution of energy losses both across the entire machine and within its key flow components.The findings reveal that turbulent viscous dissipation is the predominant contributor to total entropy production.Interestingly,while the relative importance of the entropy produced by various sources as the mass flow rate rises remains essentially unchanged,the total entropy production exhibits a nonmonotonic trend,first decreasing and then increasing with the mass flow rate.High entropy production in the impeller is primarily concentrated in the clearance region and along the rear cover of the impeller tip.In the diffuser,it is most pronounced on the front and rear plates and within the central flow path.Meanwhile,in the volute,the highest entropy production occurs around the diffuser outlet and along the outer region of the volute’s centerline.展开更多
The influence of Impedance Boundary Condition (IBC) on transonic compressors is investigated. A systematic input–output analytical framework is developed, which treats the nonlinearities as unknown forcing terms. The...The influence of Impedance Boundary Condition (IBC) on transonic compressors is investigated. A systematic input–output analytical framework is developed, which treats the nonlinearities as unknown forcing terms. The framework is validated through the experiments of rotating inlet distortion within a low-speed compressor. The input–output method is subsequently applied to transonic compressors, including NASA Rotor37 and Stage35, wherein impedance optimization is studied along with the exploration of its fundamental mechanisms. The IBC is employed to model the effect of Casing Treatment (CT). The optimal complex impedance values are determined through predicted results and tested across a range of circumferential modes and forcing frequencies. The IBC significantly reduces the energy and Reynolds stress gain, notably at the first-order circumferential mode and within the Rotor Rotating Frequency (RRF) range. Output modes reveal that transonic compressors with fine-tuned impedance values exhibit a more confined perturbation distribution and redistribute the perturbations compared to the uncontrolled case. Additionally, the roles of resistance and reactance are elucidated through input–output analysis, and resistance determines the energy transfer direction between flow and pressure waves and modulates the amplitude, whereas reactance modifies the phase relationships and attenuates the perturbations.展开更多
This paper introduces a new method based on deep belief networks(DBNs)to integrate intrinsic vibration information and assess the similarity of subspaces established on the Grassmann manifold for intelligent fault dia...This paper introduces a new method based on deep belief networks(DBNs)to integrate intrinsic vibration information and assess the similarity of subspaces established on the Grassmann manifold for intelligent fault diagnosis of a reciprocating compressor(RC).Initially,raw vibration signals undergo empirical mode decomposition to break them down into multiple intrinsic mode functions(IMFs).This operation can reveal inherent vibration patterns of fault and other components hidden in the original signals.Subsequently,features are refined from all the IMFs and concatenated into a high-dimensional representative vector,offering localized and comprehensive insights into RC operation.Through DBN,the fault-sensitive information is further refined from the features to enhance their performance in fault identification.Finally,similarities among subspaces on the Grassmann manifold are computed to match fault types.The efficacy of the method is validated usingfield data.Comparative analysis with traditional approaches for feature dimension reduction,feature extraction,and Euclidean distance-based fault identification underscores the effectiveness and superiority of the proposed method in RC fault diagnosis.展开更多
This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide(sCO_(2))centrifugal compressors under varying operating conditions.In particular,the Sandia main compresso...This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide(sCO_(2))centrifugal compressors under varying operating conditions.In particular,the Sandia main compressor impeller model is used as a reference system.Through three-dimensional numerical simulations,we examine the Mach number distribution,temperature field,blade pressure pulsation spectra,and velocity field evolution,and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation.Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s.At the lower limit(0.74 kg/s),the maximum Mach number within the compressor decreases by 28%,while the temperature gradient sharpens,entropy rises notably,and fluid density varies significantly.The maximum pressure near the blades increases by 6%,yet flow velocity near the blades and outlet declines,with a 19%reduction in peak speed.Consequently,isentropic efficiency falls by 13%.Conversely,at 3.74 kg/s,the maximum Mach number increases by 23.7%,with diminished temperature gradients and minor fluid density variations.However,insufficient enthalpy gain and intensified pressure pulsations near the blades result in a 12%pressure drop.Peak velocity within the impeller channel surges by 23%,amplifying velocity gradients,inducing flow separation,and ultimately reducing the pressure ratio from 1.47 to 1.34.展开更多
To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinat...To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades.展开更多
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ...This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.展开更多
It is well known that single-atom catalysts(SACs)have become a hot topic in the field of catalysis due to their advantages such as 100%metal atom utilization efficiency,high catalytic activity and selectivity compared...It is well known that single-atom catalysts(SACs)have become a hot topic in the field of catalysis due to their advantages such as 100%metal atom utilization efficiency,high catalytic activity and selectivity compared with conventional catalysts and nanocatalysts.However,the isolated metal atoms on SACs have thermodynamic instability and tend to agglomerate,which limit their catalytic performance.Therefore,it is of great significance to synthesize stable and high-loading single-atom catalysts(HLSACs).In this paper,we review the research progress of HLSACs from two aspects:design and application.Firstly,we comprehensively introduce the synthesis strategies of HLSACs,namely,top-down and bottom-up methods.Secondly,we overview the application status of HLSACs in three fields:electrocatalysis,thermal catalysis and photocatalysis.Finally,we summarize the development prospects and challenges of HLSACs.展开更多
This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1...This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1)and Stator 2(S2)or S1 only are closed.Detailed measurements and analysis are carried out for the former case through the unsteady wall pressure and the Blade Strain(BS).The spinning mode theory used in the rotor/stator interaction noise is employed to explain the relation between the circumferential wave number of the aerodynamic disturbance and the Nodal Diameter(ND)of the blade vibration.The variations of the vibration amplitudes of different blades and the Inter-Blade Phase Angles(IBPAs)at different moments suggest that the evolution of NSV is a highly nonuniform phenomenon along the circumferential direction.In addition,the difference between the wall-pressure spectra generated by the NSV and the classic flutter has been discussed.In the second part,the variations of aerodynamic loading due to the adjustment of the staggers of the Inlet Guide Vane(IGV),S1 and S2 have been investigated.It is found that closing S1 only can result in a great fluctuation to the performance of the front stages,which might be detrimental to the flow organization and increase the risk of NSV.In contrast,the effect of closing S2 only on the performance of the first two stages appears to be slighter relatively.展开更多
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),...To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.展开更多
基金National Basic Research Program of China (2007CB210100)National Natural Science Foundation of China (50876023)Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20060213007)
文摘This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of rnidspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.
基金co-supported by the National Natural Science Foundation of China(Grants Nos.51576162 and 51536006)
文摘In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.
基金supported by the National Natural Science Foundation of China(Grant numbers 52106057,92152301)the Fundamental Research Funds for the Central Universities(Grant number D5000210483)+2 种基金the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics(Grant numbers D5150210006,D5050220008)the 111 Project(No.B17037)the Key Laboratory of Flow Visualization and Measurement Techniques,AVIC Aerodynamics Research Institute(D5110220177).
文摘Axial overlap(AO)and percent pitch(PP)are considered as key position configuration parameters that affect the tandem cascade performance.The objective of the current study is to investigate the optimal design criteria for these two parameters in tandem cascades of subsonic highly-loaded two-dimensional compressors.Before that,the influence mechanisms of AO and PP are explored separately.Research results show that higher PP is beneficial for decreasing rear blade(RB)load,but an invalidity of gap flow occurs when it approaches 1.The change in AO has an influence on the adverse pressure gradient of the front blade(FB),and it also affects the gap flow strength and FB wake development.Then,the optimal design criteria for AO and PP are obtained in a large design space,which clarifies the matching relationship of the two parameters at different operating conditions.The best global range of AO is about-0.05 to 0.05 while PP is between 0.85 to 0.92,and PP should be smaller to avoid performance degradation as AO increases.According to the fault tolerance in practical applications,PP should be closer to the lower bound to ensure that the deterioration boundary is wide enough.
基金funded by the National Natural Science Foundation of China(No.52376039 and U24A20138)the Beijing Natural Science Foundation of China(No.JQ24017)+1 种基金the National Science and Technology Major Project of China(Nos.J2019-II-0005-0025 and Y2022-Ⅱ-0002-0005)the Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2018173)。
文摘To predict stall and surge in advance that make the aero-engine compressor operatesafely,a stall prediction model based on deep learning theory is established in the current study.The Long Short-Term Memory(LSTM)originating from the recurrent neural network is used,and a set of measured dynamic pressure datasets including the stall process is used to learn whatdetermines the weight of neural network nodes.Subsequently,the structure and function hyperpa-rameters in the model are deeply optimized,and a set of measured pressure data is used to verify theprediction effects of the model.On this basis of the above good predictive capability,stall in low-and high-speed compressor are predicted by using the established model.When a period of non-stallpressure data is used as input in the model,the model can quickly complete the prediction of sub-sequent time series data through the self-learning and prediction mechanism.Comparison with thereal-time measured pressure data demonstrates that the starting point of the predicted stall is basi-cally the same as that of the measured stall,and the stall can be predicted more than 1 s in advanceso that the occurrence of stall can be avoided.The model of stall prediction in the current study canmake up for the uncertainty of threshold selection of the existing stall warning methods based onmeasured data signal processing.It has a great application potential to predict the stall occurrenceof aero-engine compressor in advance and avoid the accidents.
文摘Two international standards,ISO 18501:2025,Performance rating of positive displacement refrigerant compressor,and ISO 18483:2025,Performance rating of centrifugal refrigerant compressor,were released at an event held by GREE and Hefei General Machinery Research Institute Co.,Ltd.in Zhuhai,South China’s Guangdong province on June 12.
基金supported by the National Science and Technology Major Project of China(Nos.2017-II-0004-0016 and J2019-I-0011-0011).
文摘Unstable operating conditions such as surge could cause damage to both aerodynamic performance and structural integrity of a compression system.This paper addresses the critical issue of aerodynamic instability in compressor design,particularly focusing on an axial-centrifugal combined compressor,a widely used yet underexplored configuration.An experimental investigation was conducted on a three-stage axial and one-stage centrifugal compressor(3A1C),using two pipe systems and employing fast-responding transducers to capture the dynamic instability process from choke condition to deep surge.Results reveal that at the design speed,3A1C enters deep surge directly,whereas at off-design speeds,it experiences rotating stall and mild surge across a wide mass flow range.Some special instability features in the combined compressor can be found in the steady state map and dynamic process.The characteristic curve of the first axial stage keeps a positive slope during the whole mass flow range at an off-design speed.The first stage could work stably on the stall characteristic curve because the centrifugal stage has stronger pressurization and plays a dominant role in global aerodynamic instability.Besides,rotating instability occurs at the first rotor tip and disappears as the back pressure increases,which is also rarely seen in a single-axial compressor.This is also related to the strong pressurization of the centrifugal stage.The findings of this paper will contribute to the understanding of aerodynamic instabilities in combined compressors.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2023-00239657)in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2024-00423772)。
文摘Nondestructive testing(NDT)methods such as visual inspection and ultrasonic testing are widely applied in manufacturing quality control,but they remain limited in their ability to detect defect characteristics.Visual inspection depends strongly on operator experience,while ultrasonic testing requires physical contact and stable coupling conditions that are difficult to maintain in production lines.These constraints become more pronounced when defect-related information is scarce or when background noise interferes with signal acquisition in manufacturing processes.This study presents a non-contact acoustic method for diagnosing defects in scroll compressors during the manufacturing process.The diagnostic approach leverages Mel-frequency cepstral coefficients(MFCC),and shorttime Fourier transform(STFT)parameters to capture the rotational frequency and harmonic characteristics of the scroll compressor.These parameters enable the extraction of defect-related features even in the presence of background noise.A convolutional neural network(CNN)model was constructed using MFCCs and spectrograms as image inputs.The proposed method was validated using acoustic data collected from compressors operated at a fixed rotational speed under real manufacturing process.The method identified normal operation and three defect types.These results demonstrate the applicability of this method in noise-prone manufacturing environments and suggest its potential for improving product quality,manufacturing reliability and productivity.
基金co-supported by the National Natural Science Foundation of China(No.52306053)the Science Center for Gas Turbine Project,China(No.P2022-B-Ⅱ-005-001)the National Science and Technology Major Project of China(No.2017-Ⅱ-0010-0024)。
文摘With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.
文摘The effects of Reynolds number on the compressor efficiency are investigated by tests on three highlyloaded 10-stage axial compressors.The tests are conducted by adjusting the inlet total pressure,and thus different Reynolds numbers are obtained.The results indicate that the compressor efficiency decreases when the Reynolds number decreases.Based on the test results,reasonable correlations between the Reynolds number and compressor efficiency for each of the three compressors are obtained.The comparison between the test result-deduced correlations and Wassell correlations indicates that the effects of Reynolds number on the efficiency predicted by the Wassell correlations are less than those obtained by the test result-deduced correlations.Owing to the complex loss models and flow behavior in highly-loaded multi-stage compressors,additional influence factors,including the tip clearance and the compressor inlet duct design,should be considered for performance correlations.Nevertheless,the Wassell correlations are valid for the tendency prediction of performance changes relating to the Reynolds number,while accurate correlations still largely depend on the specific test results.
文摘To meet the demand for miniaturized,compact,high-reliability,and long-life cryocoolers in small satellite platforms,the development of a linear Stirling cryocooler has been undertaken.Computational Fluid Dynamics(CFD)numerical simulation software was used to conduct simulation analyses,verifying the impact of porous media channel layout,eccentricity,viscous resistance coefficient of the porous media,and piston position on the designed aerostatic bearing piston employing self-supplied gas bearing technology.The calculation results indicate that both the aerostatic force and leakage increase synchronously with eccentricity,while the two designed gas lift channel layouts are capable of providing sufficient load-bearing capacity while ensuring minimal leakage.Through calculations,it was determined that the viscous resistance coefficient of the porous media material,used as a throttling mechanism,is most suitable within the range of 81011 to 810131/m2.When studying the piston position,it was found that××due to the influence of the gas film length,the aerostatic force gradually increases as the piston moves from the maximum compression stroke state to the maximum low-pressure stroke state.To validate combining simulation with experimental platform testing,a support fixture platform for testing the load-bearing capacity of the gas bearings was independently constructed.The development of the aerostatic bearing piston prototype was completed,and performance tests were conducted,confirming that the trend of aerostatic force variation with gas film length is consistent with calculations.Additionally,it was verified that under the two aerostatic channel layouts,the aerostatic force closely matches the calculated values.
基金supported by the National Natural Science Foundation of China(No.52276025)the Science Center for Gas Turbine Project of China(Nos.P2022-A-Ⅱ-001-001,P2022-A-Ⅱ-002-001 and P2022-B-Ⅱ-002-001)。
文摘The increasing performance demands of modern aero engines necessitate the integrated design of compressor transition ducts with upstream components to reduce the axial length of the engine.However,this design approach narrows the spacing between the stator and the strut,making traditional research on transition ducts only with struts unsuitable.The numerical results and experimental oil flow visualization results were utilized to reconstruct the three-dimensional flow structures in the stator passages under various operating conditions.Additionally,numerical methods were employed to analyze the mechanisms of the strut's effect on the upstream stator in an aggressive transition duct.The results show that the strut potential field increases the load on the upstream stator,leading to severe blade surface separation and corner separation/stall,and redistributes the inflow angle of the upstream stators circumferentially,resulting in significant differences in the flow structures within the stator passages on both sides.The separation flows within the stator passages mainly manifest in five types:pressure surface separation vortex,suction surface concentrated shedding vortex,suction surface separation vortex,suction surface-corner stall separation vortex,and suction surface separation vortex pair.Under different operating conditions,the separation flows within the stator passages are always composed of a part of these five types or a transitional state between two of them.
基金supported by theDouble First-Class Key ProgramofGansu ProvincialDepartment of Education(grant number GCJ2022-38)Science and Technology Program of Gansu Province(grant number 22ZD6GA038)Key Research and Development Program of Gansu Province—Industrial Project(grant number 25YFGA021).
文摘In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential for enhancing the performance of such systems.This study examines the main sCO_(2) compressor from Sandia Laboratory,utilizing entropy production theory to elucidate the sources and distribution of energy losses both across the entire machine and within its key flow components.The findings reveal that turbulent viscous dissipation is the predominant contributor to total entropy production.Interestingly,while the relative importance of the entropy produced by various sources as the mass flow rate rises remains essentially unchanged,the total entropy production exhibits a nonmonotonic trend,first decreasing and then increasing with the mass flow rate.High entropy production in the impeller is primarily concentrated in the clearance region and along the rear cover of the impeller tip.In the diffuser,it is most pronounced on the front and rear plates and within the central flow path.Meanwhile,in the volute,the highest entropy production occurs around the diffuser outlet and along the outer region of the volute’s centerline.
基金co-supported by the National Natural Science Foundation of China(Nos.52325602,52306036 and 52306035)the National Science and Technology Major Project of China(No.Y2022-II-0003-0006 and Y2022-II-0002-0005)+1 种基金the project funded by China Postdoctoral Science Foundation(No.2022M720346)supported by the Key Laboratory of Pre-Research Management Centre of China(No.6142702200101).
文摘The influence of Impedance Boundary Condition (IBC) on transonic compressors is investigated. A systematic input–output analytical framework is developed, which treats the nonlinearities as unknown forcing terms. The framework is validated through the experiments of rotating inlet distortion within a low-speed compressor. The input–output method is subsequently applied to transonic compressors, including NASA Rotor37 and Stage35, wherein impedance optimization is studied along with the exploration of its fundamental mechanisms. The IBC is employed to model the effect of Casing Treatment (CT). The optimal complex impedance values are determined through predicted results and tested across a range of circumferential modes and forcing frequencies. The IBC significantly reduces the energy and Reynolds stress gain, notably at the first-order circumferential mode and within the Rotor Rotating Frequency (RRF) range. Output modes reveal that transonic compressors with fine-tuned impedance values exhibit a more confined perturbation distribution and redistribute the perturbations compared to the uncontrolled case. Additionally, the roles of resistance and reactance are elucidated through input–output analysis, and resistance determines the energy transfer direction between flow and pressure waves and modulates the amplitude, whereas reactance modifies the phase relationships and attenuates the perturbations.
文摘This paper introduces a new method based on deep belief networks(DBNs)to integrate intrinsic vibration information and assess the similarity of subspaces established on the Grassmann manifold for intelligent fault diagnosis of a reciprocating compressor(RC).Initially,raw vibration signals undergo empirical mode decomposition to break them down into multiple intrinsic mode functions(IMFs).This operation can reveal inherent vibration patterns of fault and other components hidden in the original signals.Subsequently,features are refined from all the IMFs and concatenated into a high-dimensional representative vector,offering localized and comprehensive insights into RC operation.Through DBN,the fault-sensitive information is further refined from the features to enhance their performance in fault identification.Finally,similarities among subspaces on the Grassmann manifold are computed to match fault types.The efficacy of the method is validated usingfield data.Comparative analysis with traditional approaches for feature dimension reduction,feature extraction,and Euclidean distance-based fault identification underscores the effectiveness and superiority of the proposed method in RC fault diagnosis.
基金National Science Foundation of China(grant numbers 52366009 and 52130607)Doble First-Class Key Programof Gansu Provincial Department of Education(grant number GCJ2022-38)+1 种基金2022 Gansu Provincial University Industry Support Plan Project(grant number 2022CYZC-21)KeyR&DProgramofGansu Province of China(grant number 22YF7GA163).
文摘This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide(sCO_(2))centrifugal compressors under varying operating conditions.In particular,the Sandia main compressor impeller model is used as a reference system.Through three-dimensional numerical simulations,we examine the Mach number distribution,temperature field,blade pressure pulsation spectra,and velocity field evolution,and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation.Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s.At the lower limit(0.74 kg/s),the maximum Mach number within the compressor decreases by 28%,while the temperature gradient sharpens,entropy rises notably,and fluid density varies significantly.The maximum pressure near the blades increases by 6%,yet flow velocity near the blades and outlet declines,with a 19%reduction in peak speed.Consequently,isentropic efficiency falls by 13%.Conversely,at 3.74 kg/s,the maximum Mach number increases by 23.7%,with diminished temperature gradients and minor fluid density variations.However,insufficient enthalpy gain and intensified pressure pulsations near the blades result in a 12%pressure drop.Peak velocity within the impeller channel surges by 23%,amplifying velocity gradients,inducing flow separation,and ultimately reducing the pressure ratio from 1.47 to 1.34.
基金funded by the National Natural Science Foundation of China(Nos.U24A20138 and No.52376039)the Beijing Natural Science Foundation,China(JQ24017)+1 种基金the National Science and Technology Major Project of China(Nos.J2019-II-0005-0025 and Y2022-II-0002-0005)the Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences,China(No.2018173).
文摘To assess the aerodynamic performance and vibration characteristics of rotor blades during rotation,a study of unsteady blade surface forces is conducted in a low-speed axial flow compressor under a rotating coordinate system.The capture,modulation,and acquisition of unsteady blade surface forces are achieved by using pressure sensors and strain gauges attached to the rotor blades,in conjunction with a wireless telemetry system.Based on the measurement reliability verification,this approach allows for the determination of the static pressure distribution on rotor blade surfaces,enabling the quantitative description of loadability at different spanwise positions along the blade chord.Effects caused by the factors such as Tip Leakage Flow(TLF)and flow separation can be perceived and reflected in the trends of static pressure on the blade surfaces.Simultaneously,the dynamic characteristics of unsteady pressure and stress on the blade surfaces are analyzed.The results indicate that only the pressure signals measured at the mid-chord of the blade tip can distinctly detect the unsteady frequency of TLF due to the oscillation of the low-pressure spot on the pressure surface.Subsequently,with the help of one-dimensional continuous wavelet analysis method,it can be inferred that as the compressor enters stall,the sensors are capable of capturing stall cell frequency under a rotating coordinate system.Furthermore,the stress at the blade root is higher than that at the blade tip,and the frequency band of the vibration can also be measured by the pressure sensors fixed on the casing wall in a stationary frame.While the compressor stalls,the stress at the blade root can be higher,which can provide valuable guidance for monitoring the lifecycle of compressor blades.
文摘This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.
基金financially supported by Beijing Natural Science Foundation(No.2212018)Beijing Institute of Technology Research Fund Program for Young Scholars(No.2022CX01011)+3 种基金Ningbo 3315 Innovative Teams Program(No.2019A-14-C)the National Natural Science Foundation of China(No.12374390)the Member of Youth Innovation Promotion Association Foundation of CAS,China(No.2023310)the Key Scientific and Technological Special Project of Ningbo City No.(2023Z209)。
文摘It is well known that single-atom catalysts(SACs)have become a hot topic in the field of catalysis due to their advantages such as 100%metal atom utilization efficiency,high catalytic activity and selectivity compared with conventional catalysts and nanocatalysts.However,the isolated metal atoms on SACs have thermodynamic instability and tend to agglomerate,which limit their catalytic performance.Therefore,it is of great significance to synthesize stable and high-loading single-atom catalysts(HLSACs).In this paper,we review the research progress of HLSACs from two aspects:design and application.Firstly,we comprehensively introduce the synthesis strategies of HLSACs,namely,top-down and bottom-up methods.Secondly,we overview the application status of HLSACs in three fields:electrocatalysis,thermal catalysis and photocatalysis.Finally,we summarize the development prospects and challenges of HLSACs.
基金co-supported by the Beijing Natural Science Foundation,China(No.3244044)the National Natural Science Foundation of China(No.52022009)+1 种基金the Science Center for Gas Turbine Project of China(No.P2022-A-II-003-001)the Key Laboratory Foundation,China(No.2021-JCJQ-LB-062-0102).
文摘This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1)and Stator 2(S2)or S1 only are closed.Detailed measurements and analysis are carried out for the former case through the unsteady wall pressure and the Blade Strain(BS).The spinning mode theory used in the rotor/stator interaction noise is employed to explain the relation between the circumferential wave number of the aerodynamic disturbance and the Nodal Diameter(ND)of the blade vibration.The variations of the vibration amplitudes of different blades and the Inter-Blade Phase Angles(IBPAs)at different moments suggest that the evolution of NSV is a highly nonuniform phenomenon along the circumferential direction.In addition,the difference between the wall-pressure spectra generated by the NSV and the classic flutter has been discussed.In the second part,the variations of aerodynamic loading due to the adjustment of the staggers of the Inlet Guide Vane(IGV),S1 and S2 have been investigated.It is found that closing S1 only can result in a great fluctuation to the performance of the front stages,which might be detrimental to the flow organization and increase the risk of NSV.In contrast,the effect of closing S2 only on the performance of the first two stages appears to be slighter relatively.
基金sponsored by the National Natural Science Foundation of China(No.52106057)the National Major Science and Technology Projects of China(No.2017-Ⅱ-0001-0013)+2 种基金Fundamental Research Funds for the Central Universities of China(No.D5000210483)the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics of China(Nos.D5150210006 and D5050210015)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023012).
文摘To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.