期刊文献+
共找到5,647篇文章
< 1 2 250 >
每页显示 20 50 100
Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing
1
作者 Anees Ara Muhammad Mujahid +2 位作者 Amal Al-Rasheed Shaha Al-Otaibi Tanzila Saba 《Computers, Materials & Continua》 2025年第8期2717-2731,共15页
DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without... DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches. 展开更多
关键词 DeepSeek PREDICTION natural language processing deep learning analysis TextBlob imbalance data
在线阅读 下载PDF
Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services
2
作者 Sangmin Kim Byeongcheon Lee +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computer Modeling in Engineering & Sciences》 2025年第5期2079-2108,共30页
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a... The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes. 展开更多
关键词 Online grooming KcELECTRA natural language processing optical character recognition social networking service text classification
在线阅读 下载PDF
Adapting High-Level Language Programming(C Language)Education in the Era of Large Language Models
3
作者 Baokai Zu Hongyuan Wang +1 位作者 Hongli Chen Yafang Li 《Journal of Contemporary Educational Research》 2025年第5期264-269,共6页
With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunitie... With the widespread application of large language models(LLMs)in natural language processing and code generation,traditional High-Level Language Programming courses are facing unprecedented challenges and opportunities.As a core programming language for computer science majors,C language remains irreplaceable due to its foundational nature and engineering adaptability.This paper,based on the rapid development of large model technologies,proposes a systematic reform design for C language teaching,focusing on teaching objectives,content structure,teaching methods,and evaluation systems.The article suggests a teaching framework centered on“human-computer collaborative programming,”integrating prompt training,AI-assisted debugging,and code generation analysis,aiming to enhance students’problem modeling ability,programming expression skills,and AI collaboration literacy. 展开更多
关键词 Large language models(LLMs) high-level language programming C language Human-computer collaborative programming
在线阅读 下载PDF
Research on Human-Computer Collaboration Paradigm in AIGC-Empowered High-Level Language Programming Courses
4
作者 Hongyuan Wang Baokai Zu +2 位作者 Yafang Li Wanting Zhu Hongli Chen 《Journal of Contemporary Educational Research》 2025年第5期285-289,共5页
With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply ... With the rapid development of artificial intelligence technology,AIGC(Artificial Intelligence-Generated Content)has triggered profound changes in the field of high-level language programming courses.This paper deeply explored the application principles,advantages,and limitations of AIGC in intelligent code generation,analyzed the new mode of human-computer collaboration in high-level language programming courses driven by AIGC,discussed the impact of human-computer collaboration on programming efficiency and code quality through practical case studies,and looks forward to future development trends.This research aims to provide theoretical and practical guidance for high-level language programming courses and promote innovative development of high-level language programming courses under the human-computer collaboration paradigm. 展开更多
关键词 Human-computer collaboration AIGC high-level language programming Intelligence programming Efficiency improvement
在线阅读 下载PDF
Literature classification and its applications in condensed matter physics and materials science by natural language processing
5
作者 吴思远 朱天念 +5 位作者 涂思佳 肖睿娟 袁洁 吴泉生 李泓 翁红明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期117-123,共7页
The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classificatio... The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions. 展开更多
关键词 natural language processing text mining materials science
原文传递
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
6
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
在线阅读 下载PDF
Unlocking the Potential:A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks
7
作者 Ebtesam Ahmad Alomari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期43-85,共43页
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in... As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues. 展开更多
关键词 Generative AI large languagemodel(LLM) natural language processing(NLP) ChatGPT GPT(generative pretraining transformer) GPT-4 sentiment analysis NER information extraction ANNOTATION text classification
在线阅读 下载PDF
Application of Natural Language Processing in Virtual Experience AI Interaction Design
8
作者 Ziqian Rong 《Journal of Intelligent Learning Systems and Applications》 2024年第4期403-417,共15页
This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virt... This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences. 展开更多
关键词 Natural language processing Virtual Reality Augmented Reality Interaction Design User Experience
在线阅读 下载PDF
Herding and investor sentiment after the cryptocurrency crash:evidence from Twitter and natural language processing
9
作者 Michael Cary 《Financial Innovation》 2024年第1期425-447,共23页
Although the 2022 cryptocurrency market crash prompted despair among investors,the rallying cry,“wagmi”(We’re all gonna make it.)emerged among cryptocurrency enthusiasts in the aftermath.Did cryptocurrency enthusia... Although the 2022 cryptocurrency market crash prompted despair among investors,the rallying cry,“wagmi”(We’re all gonna make it.)emerged among cryptocurrency enthusiasts in the aftermath.Did cryptocurrency enthusiasts respond to this crash differently compared to traditional investors?Using natural language processing techniques applied to Twitter data,this study employed a difference-in-differences method to determine whether the cryptocurrency market crash had a differential effect on investor sentiment toward cryptocurrency enthusiasts relative to more traditional investors.The results indicate that the crash affected investor sentiment among cryptocurrency enthusiastic investors differently from traditional investors.In particular,cryptocurrency enthusiasts’tweets became more neutral and,surprisingly,less negative.This result appears to be primarily driven by a deliberate,collectivist effort to promote positivity within the cryptocurrency community(“wagmi”).Considering the more nuanced emotional content of tweets,it appears that cryptocurrency enthusiasts expressed less joy and surprise in the aftermath of the cryptocurrency crash than traditional investors.Moreover,cryptocurrency enthusiasts tweeted more frequently after the cryptocurrency crash,with a relative increase in tweet frequency of approximately one tweet per day.An analysis of the specific textual content of tweets provides evidence of herding behavior among cryptocurrency enthusiasts. 展开更多
关键词 Bitcoin Cryptocurrency HERDING Investor sentiment Natural language processing Sentiment analysis TWITTER
在线阅读 下载PDF
Multilingual Text Summarization in Healthcare Using Pre-Trained Transformer-Based Language Models
10
作者 Josua Käser Thomas Nagy +1 位作者 Patrick Stirnemann Thomas Hanne 《Computers, Materials & Continua》 2025年第4期201-217,共17页
We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of t... We analyze the suitability of existing pre-trained transformer-based language models(PLMs)for abstractive text summarization on German technical healthcare texts.The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field.The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts,even if the model is not specifically trained in that language.Through experiments,the research questions explore the performance of transformer language models in dealing with complex syntax constructs,the difference in performance between models trained in English and German,and the impact of translating the source text to English before conducting the summarization.We conducted an evaluation of four PLMs(GPT-3,a translation-based approach also utilizing GPT-3,a German language Model,and a domain-specific bio-medical model approach).The evaluation considered the informativeness using 3 types of metrics based on Recall-Oriented Understudy for Gisting Evaluation(ROUGE)and the quality of results which is manually evaluated considering 5 aspects.The results show that text summarization models could be used in the German healthcare domain and that domain-independent language models achieved the best results.The study proves that text summarization models can simplify the search for pre-existing German knowledge in various domains. 展开更多
关键词 Text summarization pre-trained transformer-based language models large language models technical healthcare texts natural language processing
在线阅读 下载PDF
GLMTopic:A Hybrid Chinese Topic Model Leveraging Large Language Models
11
作者 Weisi Chen Walayat Hussain Junjie Chen 《Computers, Materials & Continua》 2025年第10期1559-1583,共25页
Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasi... Topic modeling is a fundamental technique of content analysis in natural language processing,widely applied in domains such as social sciences and finance.In the era of digital communication,social scientists increasingly rely on large-scale social media data to explore public discourse,collective behavior,and emerging social concerns.However,traditional models like Latent Dirichlet Allocation(LDA)and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets,especially in complex non-English languages like Chinese.This paper presents Generative Language Model Topic(GLMTopic)a novel hybrid topic modeling framework leveraging the capabilities of large language models,designed to support social science research by uncovering coherent and interpretable themes from Chinese social media platforms.GLMTopic integrates Adaptive Community-enhanced Graph Embedding for advanced semantic representation,Uniform Manifold Approximation and Projection-based(UMAP-based)dimensionality reduction,Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)clustering,and large language model-powered(LLM-powered)representation tuning to generate more contextually relevant and interpretable topics.By reducing dependence on extensive text preprocessing and human expert intervention in post-analysis topic label annotation,GLMTopic facilitates a fully automated and user-friendly topic extraction process.Experimental evaluations on a social media dataset sourced from Weibo demonstrate that GLMTopic outperforms Latent Dirichlet Allocation(LDA)and BERTopic in coherence score and usability with automated interpretation,providing a more scalable and semantically accurate solution for Chinese topic modeling.Future research will explore optimizing computational efficiency,integrating knowledge graphs and sentiment analysis for more complicated workflows,and extending the framework for real-time and multilingual topic modeling. 展开更多
关键词 Topic modeling large language model deep learning natural language processing text mining
在线阅读 下载PDF
A Critical Review of Methods and Challenges in Large Language Models
12
作者 Milad Moradi Ke Yan +2 位作者 David Colwell Matthias Samwald Rhona Asgari 《Computers, Materials & Continua》 2025年第2期1681-1698,共18页
This critical review provides an in-depth analysis of Large Language Models(LLMs),encompassing their foundational principles,diverse applications,and advanced training methodologies.We critically examine the evolution... This critical review provides an in-depth analysis of Large Language Models(LLMs),encompassing their foundational principles,diverse applications,and advanced training methodologies.We critically examine the evolution from Recurrent Neural Networks(RNNs)to Transformer models,highlighting the significant advancements and innovations in LLM architectures.The review explores state-of-the-art techniques such as in-context learning and various fine-tuning approaches,with an emphasis on optimizing parameter efficiency.We also discuss methods for aligning LLMs with human preferences,including reinforcement learning frameworks and human feedback mechanisms.The emerging technique of retrieval-augmented generation,which integrates external knowledge into LLMs,is also evaluated.Additionally,we address the ethical considerations of deploying LLMs,stressing the importance of responsible and mindful application.By identifying current gaps and suggesting future research directions,this review provides a comprehensive and critical overview of the present state and potential advancements in LLMs.This work serves as an insightful guide for researchers and practitioners in artificial intelligence,offering a unified perspective on the strengths,limitations,and future prospects of LLMs. 展开更多
关键词 Large language models artificial intelligence natural language processing machine learning generative artificial intelligence
在线阅读 下载PDF
The Development of Large Language Models in the Financial Field
13
作者 Yanling Liu Yun Li 《Proceedings of Business and Economic Studies》 2025年第2期49-54,共6页
With the rapid development of natural language processing(NLP)and machine learning technology,applying large language models(LLMs)in the financial field shows a significant growth trend.This paper systematically revie... With the rapid development of natural language processing(NLP)and machine learning technology,applying large language models(LLMs)in the financial field shows a significant growth trend.This paper systematically reviews the development status,main applications,challenges,and future development direction of LLMs in the financial field.Financial Language models(FinLLMs)have been successfully applied to many scenarios,such as sentiment analysis,automated trading,risk assessment,etc.,through deep learning architectures such as BERT,Llama,and domain data fine-tuning.However,issues such as data privacy,model interpretability,and ethical governance still pose constraints to their widespread application.Future research should focus on improving model performance,addressing bias issues,strengthening privacy protection,and establishing a sound regulatory framework to ensure the healthy development of LLMs in the financial sector. 展开更多
关键词 Large language model Fintech Natural language processing Ethics of artificial intelligence
在线阅读 下载PDF
From lab to fab:A large language model for chemical engineering
14
作者 Jibin Zhou Feiyang Xu +10 位作者 Zhijun Chang Duiping Liu Lulu Li Jian Cui Yi Li Xin Li Li Qian Zhixiong Zhang Guoping Hu Mao Ye Zhongmin Liu 《Chinese Journal of Catalysis》 2025年第6期159-173,共15页
The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by sub... The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by substantial time and economic costs.To address these challenges,in this work,we report ChemELLM,a domain‐specific large language model(LLM)with 70 billion parameters for chemical engineering.ChemELLM demonstrates state‐of‐the‐art performance across critical tasks ranging from foundational understanding to professional problem‐solving.It outperforms mainstream LLMs(e.g.,O1‐Preview,GPT‐4o,and DeepSeek‐R1)on ChemEBench,the first multidimensional benchmark for chemical engineering,which encompasses 15 dimensions across 101 distinct essential tasks.To support robust model development,we curated ChemEData,a purpose‐built dataset containing 19 billion tokens for pre‐training and 1 billion tokens for fine‐tuning.This work establishes a new paradigm for artificial intelligence‐driven innovation,bridging the gap between laboratory‐scale innovation and industrial‐scale implementation,thus accelerating technological advancement in chemical engineering.ChemELLM is publicly available at https://chemindustry.iflytek.com/chat. 展开更多
关键词 Large language model Chemical engineering process development Multidimensional benchmark Domain adaptation
在线阅读 下载PDF
Large Language Model-Driven Knowledge Discovery for Designing Advanced Micro/Nano Electrocatalyst Materials
15
作者 Ying Shen Shichao Zhao +3 位作者 Yanfei Lv Fei Chen Li Fu Hassan Karimi-Maleh 《Computers, Materials & Continua》 2025年第8期1921-1950,共30页
This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electroca... This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electrocatalysis is central to sustainable energy and environmental technologies,but traditional catalyst discovery is often hindered by high complexity,fragmented knowledge,and inefficiencies.LLMs,particularly those based on Transformer architectures,offer unprecedented capabilities in extracting,synthesizing,and generating scientific knowledge from vast unstructured textual corpora.This work provides the first structured synthesis of how LLMs have been leveraged across various electrocatalysis tasks,including automated information extraction from literature,text-based property prediction,hypothesis generation,synthesis planning,and knowledge graph construction.We comparatively analyze leading LLMs and domain-specific frameworks(e.g.,CatBERTa,CataLM,CatGPT)in terms of methodology,application scope,performance metrics,and limitations.Through curated case studies across key electrocatalytic reactions—HER,OER,ORR,and CO_(2)RR—we highlight emerging trends such as the growing use of embedding-based prediction,retrieval-augmented generation,and fine-tuned scientific LLMs.The review also identifies persistent challenges,including data heterogeneity,hallucination risks,lack of standard benchmarks,and limited multimodal integration.Importantly,we articulate future research directions,such as the development of multimodal and physics-informedMatSci-LLMs,enhanced interpretability tools,and the integration of LLMswith selfdriving laboratories for autonomous discovery.By consolidating fragmented advances and outlining a unified research roadmap,this review provides valuable guidance for both materials scientists and AI practitioners seeking to accelerate catalyst innovation through large language model technologies. 展开更多
关键词 Large languagemodels ELECTROCATALYSIS NANOMATERIALS knowledge discovery materials design artificial intelligence natural language processing
在线阅读 下载PDF
Developing a large language model for oil- and gas-related rock mechanics: Progress and challenges
16
作者 Botao Lin Yan Jin +3 位作者 Qianwen Cao Han Meng Huiwen Pang Shiming Wei 《Natural Gas Industry B》 2025年第2期110-122,共13页
In recent years,large language models(LLMs)have demonstrated immense potential in practical applications to enhance work efficiency and decision-making capabilities.However,specialized LLMs in the oil and gas engineer... In recent years,large language models(LLMs)have demonstrated immense potential in practical applications to enhance work efficiency and decision-making capabilities.However,specialized LLMs in the oil and gas engineering area are rarely developed.To aid in exploring and developing deep and ultra-deep unconventional reservoirs,there is a call for a personalized LLM on oil-and gas-related rock mechanics,which may handle complex professional data and make intelligent predictions and decisions.To that end,herein,we overview general and industry-specific LLMs.Then,a systematic workflow is proposed for building this domain-specific LLM for oil and gas engineering,including data collection and processing,model construction and training,model validation,and implementation in the specific domain.Moreover,three application scenarios are investigated:knowledge extraction from textural resources,field operation with multidisciplinary integration,and intelligent decision assistance.Finally,several challenges in developing this domain-specific LLM are highlighted.Our key findings are that geological surveys,laboratory experiments,field tests,and numerical simulations form the four original sources of rock mechanics data.Those data must flow through collection,storage,processing,and governance before being fed into LLM training.This domain-specific LLM can be trained by fine-tuning a general open-source LLM with professional data and constraints such as rock mechanics datasets and principles.The LLM can then follow the commonly used training and validation processes before being implemented in the oil and gas field.However,there are three primary challenges in building this domain-specific LLM:data standardization,data security and access,and striking a compromise between physics and data when building the model structure.Some of these challenges are administrative rather than technical,and overcoming those requires close collaboration between the different interested parties and various professional practitioners. 展开更多
关键词 Large language model Oil and gas Rock mechanics Data processing Artificial intelligence
在线阅读 下载PDF
Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts
17
作者 Lilia-Eliana Popescu-Apreutesei Mihai-Sorin Iosupescu +1 位作者 Sabina Cristiana Necula Vasile-Daniel Pavaloaia 《Computers, Materials & Continua》 2025年第8期2605-2644,共40页
The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situati... The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality. 展开更多
关键词 AI-GA dataset bidirectional LSTM GloVe embeddings AI-generated text detection academic integrity deep learning OVERFITTING natural language processing
在线阅读 下载PDF
Deep Learning with Natural Language Processing Enabled Sentimental Analysis on Sarcasm Classification 被引量:2
18
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2553-2567,共15页
Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier... Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection,punctuations,and sentiment shift that are vital indicators of sarcasm.With the advent of deep-learning,recent works,leveraging neural networks in learning lexical and contextual features,removing the need for handcrafted feature.In this aspect,this study designs a deep learning with natural language processing enabled SA(DLNLP-SA)technique for sarcasm classification.The proposed DLNLP-SA technique aims to detect and classify the occurrence of sarcasm in the input data.Besides,the DLNLP-SA technique holds various sub-processes namely preprocessing,feature vector conversion,and classification.Initially,the pre-processing is performed in diverse ways such as single character removal,multi-spaces removal,URL removal,stopword removal,and tokenization.Secondly,the transformation of feature vectors takes place using the N-gram feature vector technique.Finally,mayfly optimization(MFO)with multi-head self-attention based gated recurrent unit(MHSA-GRU)model is employed for the detection and classification of sarcasm.To verify the enhanced outcomes of the DLNLP-SA model,a comprehensive experimental investigation is performed on the News Headlines Dataset from Kaggle Repository and the results signified the supremacy over the existing approaches. 展开更多
关键词 Sentiment analysis sarcasm detection deep learning natural language processing N-GRAMS hyperparameter tuning
在线阅读 下载PDF
A review of functional MRI application for brain research of Chinese language processing 被引量:2
19
作者 Jianqiao Ge Jia-Hong Gao 《Magnetic Resonance Letters》 2023年第1期1-13,I0002,共14页
As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language... As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language and cognition.In recent years,non-invasive neuroimaging techniques such as magnetic resonance imaging(MRI)blaze a new trail to comprehensively study specific neural correlates of Chinese language processing and Chinese speakers.We reviewed the application of functional MRI(fMRI)in such studies and some essential findings on brain systems in processing Chinese.Specifically,for example,the application of task fMRI and resting-state fMRI in observing the process of reading and writing the logographic characters and producing or listening to the tonal speech.Elementary cognitive neuroscience and several potential research directions around brain and Chinese language were discussed,which may be informative for future research. 展开更多
关键词 Functional MRI language task Chinese language processing Human brain RESTING-STATE
暂未订购
Numerical‐discrete‐scheme‐incorporated recurrent neural network for tasks in natural language processing 被引量:1
20
作者 Mei Liu Wendi Luo +3 位作者 Zangtai Cai Xiujuan Du Jiliang Zhang Shuai Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1415-1424,共10页
A variety of neural networks have been presented to deal with issues in deep learning in the last decades.Despite the prominent success achieved by the neural network,it still lacks theoretical guidance to design an e... A variety of neural networks have been presented to deal with issues in deep learning in the last decades.Despite the prominent success achieved by the neural network,it still lacks theoretical guidance to design an efficient neural network model,and verifying the performance of a model needs excessive resources.Previous research studies have demonstrated that many existing models can be regarded as different numerical discretizations of differential equations.This connection sheds light on designing an effective recurrent neural network(RNN)by resorting to numerical analysis.Simple RNN is regarded as a discretisation of the forward Euler scheme.Considering the limited solution accuracy of the forward Euler methods,a Taylor‐type discrete scheme is presented with lower truncation error and a Taylor‐type RNN(T‐RNN)is designed with its guidance.Extensive experiments are conducted to evaluate its performance on statistical language models and emotion analysis tasks.The noticeable gains obtained by T‐RNN present its superiority and the feasibility of designing the neural network model using numerical methods. 展开更多
关键词 deep learning natural language processing neural network text analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部