In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative ro...In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.展开更多
The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of...The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.展开更多
Nanocomposites of high-density polyethylene(HDPE)modified with 0.2 phr graphene-zinc oxide(GN-ZnO)exhibited optimal mechanical properties and thermal stability.Two other nano-materials—GN and nano-ZnO—were also used...Nanocomposites of high-density polyethylene(HDPE)modified with 0.2 phr graphene-zinc oxide(GN-ZnO)exhibited optimal mechanical properties and thermal stability.Two other nano-materials—GN and nano-ZnO—were also used to compare them with GN-ZnO.increasing the content of GN-ZnO gradually enhanced the antibacterial and barrier properties,but the addition of 0.3 phr GN-ZnO led to agglomeration that caused defects in the nanocomposites.Herein,we investigated the antibacterial and barrier properties of HDPE nanocomposites infused with different nanoparticles(GN,ZnO,GN-ZnO)of varying concentrations.HDPE and the nanoparticles were meltblended together in a Haake-Buchler Rheomixer to produce a new environment-friendly nano-material with improved physical and chemical properties.The following characterizations were conducted:tensile test,thermogravimetric analysis,morphology,differential scanning calorimetry,X-ray diffraction,antibacterial test,and oxygen and water vapor permeation test.The results showed that the crystallinity of HDPE was affected with the addition of GN-ZnO,and the nanocomposites had effective antibacterial capacity,strong mechanical properties,high thermal stability,and excellent barrier performance.This type of HDPE nanocomposites reinforced with GN-ZnO would be attractive for packaging industries.展开更多
Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high d...Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.展开更多
High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the do...High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.展开更多
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ...In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.展开更多
Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w...Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improv...In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g...Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.展开更多
With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysi...With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.展开更多
This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification wa...This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification was revealed combining thermogravimetric(TG)analysis,Fourier transform infrared spectroscopy,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state 13C nuclear magnetic resonance spectroscopy.Furthermore,crucible coking experiments were also conducted using industrial coal mixture and treated PET with the optimum G(PET300)or raw PET to evaluate the applicability of PET waste in coal-blending coking.According to characterization results of coke reactivity(CR),coke strength after reaction(CSR)indices,TG-related curves,pore volumes,and Raman spectra of the resultant cokes,LTPT could greatly increase the G of PET,and the optimum temperature was 300℃.Specifically,compared with the coke obtained from the blend with PET,the CR of the coke produced from the blend with PET300 decreased by 4.9%,whereas the CSR of the increased by 7.4%,suggesting that LTPT could increase the proportion of PET used for coal-blending coking.The improvement in G is attributed to the changes in C-O/C=O ratio,aliphatic H and aromaticity caused by LTPT.展开更多
Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripher...Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
BACKGROUND Excipients may improve the palatability of polyethylene glycol(PEG),the firstline treatment for childhood functional constipation(FC),leading to good compliance and improved treatment outcomes.AIM To compar...BACKGROUND Excipients may improve the palatability of polyethylene glycol(PEG),the firstline treatment for childhood functional constipation(FC),leading to good compliance and improved treatment outcomes.AIM To compare the developed PEG-based formula(PEG-Chula)to the commercial formula for treating childhood FC.METHODS In this randomized controlled trial,we enrolled children aged<18 years with FC diagnosed by the Rome Ⅳ criteria to receive PEG-Chula[four flavors:(1)Strawberry;(2)Lychee;(3)Apple;and(4)Lychee-rose]or Forlax(orange-grapefruit flavor)for eight weeks.The primary outcomes included changes in stool frequency and consistency measured by the Bristol Stool scale.The secondary outcomes were constipation-related symptom improvement,adverse events,and palatability measured by the facial hedonic scale.RESULTS Fifty-two children diagnosed with FC[median age:4.21(2.33,7.88)years;35(67.31%)females]were enrolled.After the 8-week treatment,the mean weekly stool frequency increased in both groups,the mean change was 4.02(95%CI:3.09-4.95)in PEG-Chula and 3.78(95%CI:2.79-4.78)in commercial PEG compared to baseline(P<0.001).The extent of stool consistency improvement did not differ significantly.The most preferred PEG-Chula flavor was rated more palatable than the commercial PEG.Treatment compliance correlated with medication palatability(r=0.34,P=0.013).No significant differences in adverse events were found.CONCLUSION Both PEG-based formulas are effective and safe for managing pediatric FC.展开更多
Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst an...Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52373045 and 52033005).
文摘In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project No.RGP-VPP-133
文摘The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.
基金The authors would like to acknowledge the financial support from the following organizations:Wuliangye Group Co.,Ltd.(No.CXY2019ZR001)Sichuan Province Science and Technology Support Program(No.2019JDRC0029)+2 种基金Zigong City Science and Technology(Nos.2017XC16,2019CXRC01)Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province(Nos.2016CL10,2017CL03,2019CL05,2018CL08,2018CL07)Opening Project of Sichuan Province,the Foundation of Introduced Talent of Sichuan University of Science and Engineering(Nos.2014RC31,2017RCL31,2017RCL36,2017RCL16,2019RC05,2019RC07).Appreciation is also extended to Apex Nanotek Co.,Ltd.
文摘Nanocomposites of high-density polyethylene(HDPE)modified with 0.2 phr graphene-zinc oxide(GN-ZnO)exhibited optimal mechanical properties and thermal stability.Two other nano-materials—GN and nano-ZnO—were also used to compare them with GN-ZnO.increasing the content of GN-ZnO gradually enhanced the antibacterial and barrier properties,but the addition of 0.3 phr GN-ZnO led to agglomeration that caused defects in the nanocomposites.Herein,we investigated the antibacterial and barrier properties of HDPE nanocomposites infused with different nanoparticles(GN,ZnO,GN-ZnO)of varying concentrations.HDPE and the nanoparticles were meltblended together in a Haake-Buchler Rheomixer to produce a new environment-friendly nano-material with improved physical and chemical properties.The following characterizations were conducted:tensile test,thermogravimetric analysis,morphology,differential scanning calorimetry,X-ray diffraction,antibacterial test,and oxygen and water vapor permeation test.The results showed that the crystallinity of HDPE was affected with the addition of GN-ZnO,and the nanocomposites had effective antibacterial capacity,strong mechanical properties,high thermal stability,and excellent barrier performance.This type of HDPE nanocomposites reinforced with GN-ZnO would be attractive for packaging industries.
文摘Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFC1510802 and 2019YFC1804302)the National Natural Science Foundation of China (Grant No. 41504081)the Fundamental Research Funds for the Central Universities (Grant No. 2019B17214)。
文摘High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.
文摘In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
基金supported by the National Natural Science Foundation of China[31670573]the Innovation Training Program of Northeast Forestry University[201810225398].
文摘Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.
文摘In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
基金supported by the Department of Defense AFIRMⅢW81XWH-20-2-0029 grant subcontractLone Star Paralysis gift,UT POC19-1774-13 grant+1 种基金Neuraptive Therapeutics Inc.26-7724-56 grantNational Institutes of Health R01-NS128086(all to GDB)。
文摘Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.
文摘With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.
基金supported by the National Natural Science Foundation of China(22308006,22278001)the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0407).
文摘This work proposed a strategy to improve the caking index of polyethylene terephthalate(PET)waste,in which low-temperature pyrolysis treatment(LTPT)was used to depolymerize PET waste.The mechanism of G modification was revealed combining thermogravimetric(TG)analysis,Fourier transform infrared spectroscopy,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state 13C nuclear magnetic resonance spectroscopy.Furthermore,crucible coking experiments were also conducted using industrial coal mixture and treated PET with the optimum G(PET300)or raw PET to evaluate the applicability of PET waste in coal-blending coking.According to characterization results of coke reactivity(CR),coke strength after reaction(CSR)indices,TG-related curves,pore volumes,and Raman spectra of the resultant cokes,LTPT could greatly increase the G of PET,and the optimum temperature was 300℃.Specifically,compared with the coke obtained from the blend with PET,the CR of the coke produced from the blend with PET300 decreased by 4.9%,whereas the CSR of the increased by 7.4%,suggesting that LTPT could increase the proportion of PET used for coal-blending coking.The improvement in G is attributed to the changes in C-O/C=O ratio,aliphatic H and aromaticity caused by LTPT.
基金supported by grants from the Lone Star Paralysis Foundation,NIH R01NS081063Department of Defense award W81XWH-19-2-0054 to GDB+2 种基金supported by University of Wyoming Startup funds,Department of Defense grant W81XWH-17-1-0402the University of Wyoming Sensory Biology COBRE under National Institutes of Health(NIH)award number 5P20GM121310-02the National Institute of General Medical Sciences of the NIH under award number P20GM103432 to JSB。
文摘Behavioral recovery using(viable)peripheral nerve allografts to repair ablation-type(segmental-loss)peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration.Furthermore,such peripheral nerve allografts undergo immunological rejection by the host immune system.In contrast,peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks,reduced immune responses,and many axons do not undergo Wallerian degeneration.The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study.We hypothesized that polyethylene glycol might have some immune-protective effects,but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery.We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion.Ablation-type sciatic nerve injuries in outbred Sprague–Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts,but peripheral nerve allografts were loose-sutured(loose-sutured polyethylene glycol)with an intentional gap of 1–2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons.Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts,animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively.Other morphological signs of rejection,such as collapsed Schwann cell basal lamina tubes,were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively.Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts.While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts,loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively.MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts,but MHCII expression was modestly lower compared to negative control at 21 days postoperatively.We conclude that,while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts,successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts,and produce recovery of sensory/motor functions and voluntary behaviors.Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
基金Supported by the 90th Anniversary of Chulalongkorn University Fund(Ratchadapiseksomphot Endowment Fund)Ratchadapiseksompotch Funds,Graduate Affairs,Faculty of Medicine,Chulalongkorn University,Bangkok,Thailand,No.GA68/028.
文摘BACKGROUND Excipients may improve the palatability of polyethylene glycol(PEG),the firstline treatment for childhood functional constipation(FC),leading to good compliance and improved treatment outcomes.AIM To compare the developed PEG-based formula(PEG-Chula)to the commercial formula for treating childhood FC.METHODS In this randomized controlled trial,we enrolled children aged<18 years with FC diagnosed by the Rome Ⅳ criteria to receive PEG-Chula[four flavors:(1)Strawberry;(2)Lychee;(3)Apple;and(4)Lychee-rose]or Forlax(orange-grapefruit flavor)for eight weeks.The primary outcomes included changes in stool frequency and consistency measured by the Bristol Stool scale.The secondary outcomes were constipation-related symptom improvement,adverse events,and palatability measured by the facial hedonic scale.RESULTS Fifty-two children diagnosed with FC[median age:4.21(2.33,7.88)years;35(67.31%)females]were enrolled.After the 8-week treatment,the mean weekly stool frequency increased in both groups,the mean change was 4.02(95%CI:3.09-4.95)in PEG-Chula and 3.78(95%CI:2.79-4.78)in commercial PEG compared to baseline(P<0.001).The extent of stool consistency improvement did not differ significantly.The most preferred PEG-Chula flavor was rated more palatable than the commercial PEG.Treatment compliance correlated with medication palatability(r=0.34,P=0.013).No significant differences in adverse events were found.CONCLUSION Both PEG-based formulas are effective and safe for managing pediatric FC.
基金financially supported by the National Natural Science Foundation of China(Grant 22278439,21776313)the Shandong Province Higher Education Youth Innovation Technology Support Program(Grant 2022KJ074)。
文摘Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.