The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspa...To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspace,this study processes a novel platform integrated by a stiffness-adjustable origami spring sub-structure and a parallel mechanism.The origami-based stiffness-adjustable spring realizes low-frequency VI,and the parallel mechanism symmetry design realizes motions decoupling.In the origami-based sub-leg,the parallel-stack-assembly(PSA)design mechanism with two Miura origami configurations is proposed to generate a symmetrical negative stiffness property.Paired with a linear positive stiffness spring,the origami-based sub-leg has wide-amplitude-high-static-low-dynamic stiffness(WA-HSLDS)characteristics in one direction.Then,with construction of the parallel mechanism connected with origami-based sub-legs,an M-D VI platform is achieved,whose motions in the vertical direction and yaw direction are decoupled with the motions in the other directions.Based on the dynamic model and incremental harmonic balance(IHB)with the arc-length continuation method,appropriate structural parameters in the parallel mechanism part are figured out,and the accurate transmissibility in different directions is defined,which gives the parametric influencing investigations for realization of low-frequency VI performances.Finally,experiments are conducted to validate the accuracy and feasibility of the theoretical methods,and to demonstrate the performance of M-D low-frequency isolation with load-carrying capacity of the proposed VI platform.The integration of the origami into the parallel mechanism results in a compact,efficient,and flexible platform with nonlinear adjustability,offering new possibilities for lightweight M-D VI,and developing the practical applications in high-precision platforms in ocean and aerospace environments.展开更多
A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the i...A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
基金Project supported by the National Natural Science Foundation of China(Nos.U2441202,12372043,and 12372022)the Fundamental Research Funds for Central Universities。
文摘To break the limitations of the multi-dimensional(M-D)vibration isolation(VI)platforms with the Stewart-Gough design,such as strongly coupling motions,excessive friction in connections,heavy weight,and limited workspace,this study processes a novel platform integrated by a stiffness-adjustable origami spring sub-structure and a parallel mechanism.The origami-based stiffness-adjustable spring realizes low-frequency VI,and the parallel mechanism symmetry design realizes motions decoupling.In the origami-based sub-leg,the parallel-stack-assembly(PSA)design mechanism with two Miura origami configurations is proposed to generate a symmetrical negative stiffness property.Paired with a linear positive stiffness spring,the origami-based sub-leg has wide-amplitude-high-static-low-dynamic stiffness(WA-HSLDS)characteristics in one direction.Then,with construction of the parallel mechanism connected with origami-based sub-legs,an M-D VI platform is achieved,whose motions in the vertical direction and yaw direction are decoupled with the motions in the other directions.Based on the dynamic model and incremental harmonic balance(IHB)with the arc-length continuation method,appropriate structural parameters in the parallel mechanism part are figured out,and the accurate transmissibility in different directions is defined,which gives the parametric influencing investigations for realization of low-frequency VI performances.Finally,experiments are conducted to validate the accuracy and feasibility of the theoretical methods,and to demonstrate the performance of M-D low-frequency isolation with load-carrying capacity of the proposed VI platform.The integration of the origami into the parallel mechanism results in a compact,efficient,and flexible platform with nonlinear adjustability,offering new possibilities for lightweight M-D VI,and developing the practical applications in high-precision platforms in ocean and aerospace environments.
文摘A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.