期刊文献+
共找到215,866篇文章
< 1 2 250 >
每页显示 20 50 100
Image encoding-based bearing fault diagnosis:Review and challenges for high-speed trains
1
作者 Huimin Li Lingfeng Li +1 位作者 Bin Liu Ge Xin 《High-Speed Railway》 2025年第3期251-259,共9页
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im... High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance. 展开更多
关键词 high-speed trains Image encoding Fault diagnosis Rotating machinery Condition monitoring
在线阅读 下载PDF
Dynamic performance of a high-speed train exiting a tunnel under crosswinds
2
作者 Yanlin HU Xin GE +2 位作者 Liang LING Chao CHANG Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期21-35,共15页
The dynamic performance of high-speed trains is significantly influenced by sudden changes in aerodynamic loads(ADLs)when exiting a tunnel in a windy environment.Focusing on a double-track tunnel under construction in... The dynamic performance of high-speed trains is significantly influenced by sudden changes in aerodynamic loads(ADLs)when exiting a tunnel in a windy environment.Focusing on a double-track tunnel under construction in a mountain railway,we established an aerodynamic model involving a train exiting the tunnel,and verified it in the Fluent environment.Overset mesh technology was adopted to characterize the train’s movement.The flow field involving the train,tunnel,and crosswinds was simulated using the Reynolds-averaged turbulence model.Then,we built a comprehensive train-track coupled dynamic model considering the influences of ADLs,to investigate the vehicles’dynamic responses.The aerodynamics and dynamic behaviors of the train when affected by crosswinds with different velocities and directions are analyzed and discussed.The results show that the near-wall side crosswind leads to sharper variations in ADLs than the far-wall side crosswind.The leading vehicle suffers from more severe ADLs than other vehicles,which worsens the wheel-rail interaction and causes low-frequency vibration of the car body.When the crosswind velocity exceeds 20 m/s,significant wheel-rail impacts occur,and the running safety of the train worsens rapidly. 展开更多
关键词 high-speed train Aerodynamic characteristics Dynamic performance CROSSWIND Numerical simulation method
原文传递
A CFD-MBD Co-Simulation Approach for Studying Aerodynamic Characteristics and Dynamic Performance of High-Speed Trains
3
作者 Yanlin Hu Qinghua Chen +4 位作者 Xin Ge Wentao He Haowei Yu Liang Ling Kaiyun Wang 《Chinese Journal of Mechanical Engineering》 2025年第5期408-424,共17页
The interaction between the airflow and train influences the aerodynamic characteristics and dynamic performance of high-speed trains.This study focused on the fluid-solid coupling effect of airflow and HST,and propos... The interaction between the airflow and train influences the aerodynamic characteristics and dynamic performance of high-speed trains.This study focused on the fluid-solid coupling effect of airflow and HST,and proposed a co-simulation(CS)approach between computational fluid dynamics and multi-body dynamics.Firstly,the aerodynamic model was developed by employing overset mesh technology and the finite volume method,and the detailed train-track coupled dynamic model was established.Then the User Data Protocol was adopted to build data communication channels.Moreover,the proposed CS method was validated by comparison with a reported field test result.Finally,a case study of the HST exiting a tunnel subjected to crosswind was conducted to compare differences between CS and offline simulation(OS)methods.In terms of the presented case,the changing trends of aerodynamic forces and car-body displacements calculated by the two methods were similar.Differences mainly lie in aerodynamic moments and transient wheel-rail impacts.Maximum pitching and yawing moments on the head vehicle in the two methods differ by 21.1 kN∙m and 29.6 kN∙m,respectively.And wheel-rail impacts caused by sudden changes in aerodynamic loads are significantly severer in CS.Wheel-rail safety indices obtained by CS are slightly greater than those by OS.This research proposes a CS method for aerodynamic characteristics and dynamic performance of the HST in complex scenarios,which has superiority in computational efficiency and stability. 展开更多
关键词 Co-simulation method high-speed train Fluid-structure coupling effect Dynamic performance Aerodynamic characteristics
在线阅读 下载PDF
Transverse vibration characteristics and influence of passenger car window glass in high-speed train passing through tunnel
4
作者 Xiaogen Liu Qi Shuang +1 位作者 Zhide Wang Detian Wan 《Railway Sciences》 2025年第4期450-463,共14页
Purpose–This paper aims to analyze the transverse vibration characteristics of the high speed train window glass when passing through tunnel.Design/methodology/approach–The lateral vibration acceleration response of... Purpose–This paper aims to analyze the transverse vibration characteristics of the high speed train window glass when passing through tunnel.Design/methodology/approach–The lateral vibration acceleration response of glass chamber of high-speed train CR400BF-A on Beijing-Chengdu high-speed railway was tested at different speeds through the tunnel entrance,exit,tunnel interior,Tunnel Group and rendezvous time in the tunnel,the lateral distribution characteristics of vibration frequency and vibration power amplification coefficient of glass of high-speed train were analyzed.Findings–The results show that:The vibration of the high-speed train glass increases significantly during the tunnel,and the amplitude of vibration acceleration in the tunnel is significantly higher than outside the tunnel as the travel speed increases;the amplitude of lateral vibration acceleration of the glass of a high-speed train does not vary with changes in tunnel length and is not affected by the aerodynamic effects of the tunnel when traveling inside the tunnel,but its vibrations create noticeable fluctuations during variations when encountering oncoming traffic;The vibration characteristics of the high-speed train glass are forced harmonic vibrations,the excitation frequency does not vary with travel speed and travel position changes inside and outside the tunnel.The lateral vibration acceleration of the glass of a high-speed train is applied vertically and uniformly to the glass surface as an“inertial force”and creates a cyclic bending vibration stress that can easily lead to fatigue damage.Originality/value–The research results provide guidance for the prevention of glass failure in high-speed trains. 展开更多
关键词 high-speed train glass Crossing tunnel Vibration acceleration amplitude Vibration frequency Dynamic amplification factor
在线阅读 下载PDF
Numerical Analysis of Ice Accretion under Varying Conditions in thePantograph Region of High-Speed Trains
5
作者 Xiulong Yao Mengge Yu +1 位作者 Jiali Liu Qian Zhang 《Fluid Dynamics & Materials Processing》 2025年第11期2795-2814,共20页
High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region,which compromises both power transmission efficiency and dynamic performance.To elucidate the underl... High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region,which compromises both power transmission efficiency and dynamic performance.To elucidate the underlying mechanisms of this phenomenon,an Euler-Euler multiphase flow model was employed to simulate droplet impingement and collection on the pantograph surface,while a glaze-ice formation model incorporating wall film dynamics was used to capture the subsequent growth of ice.The effects of key parameters—including liquid water content,ambient temperature,train velocity,and droplet diameter—on the amount and morphology of ice were systematically investigated.The results show that ice accumulation intensifies with increasing liquid water content decreasing ambient temperature,and rising train speed.In contrast,larger droplet diameters reduce the overall ice mass but promote localized accretion on major structural elements.This behavior arises because larger droplets,with greater inertia,are less susceptible to entrainment by airflow into the pantograph's base region.During extended operation,substantial ice buildup develops on the pantograph head and upper and lower arms,severely impairing current collection from the overhead line and hindering the pantograph's lifting and lowering motions. 展开更多
关键词 high-speed train PANTOGRAPH supercooled droplets icing parameters
在线阅读 下载PDF
Flow field characteristics in high-speed train cabin:Negative effect of non-vertical air supply
6
作者 WU Song-bo LI Tian ZHANG Ji-ye 《Journal of Central South University》 2025年第8期3173-3186,共14页
Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environmen... Ventilation systems are critical for improving the cabin environment in high-speed trains,and their interest has increased significantly.However,whether air supply non-verticality deteriorates the cabin air environment,and the flow mechanism behind it and the degree of deterioration are not known.This study first analyzes the interaction between deflection angle and cabin flow field characteristics and ventilation performance.The results revealed that the interior temperature and pollutant concentration decreased slightly with increasing deflection angle,but resulted in significant deterioration of thermal comfort and air quality.This is evidenced by an increase in both draught rate and non-uniformity coefficient,an increase in the number of measurement points that do not satisfy the micro-wind speed and temperature difference requirements by about 5% and 15%,respectively,and an increase in longitudinal penetration of pollutants by a factor of about 5 and the appearance of locking regions at the ends of cabin.The results also show that changing the deflection pattern only affects the region of deterioration and does not essentially improve this deterioration.This study can provide reference and help for the ventilation design of high-speed trains. 展开更多
关键词 high-speed trains non-vertical air supply ventilation CFD simulation
在线阅读 下载PDF
Influencing factors and countermeasures of aging and yellowing on windshield rubber in high-speed train
7
作者 Wei Du 《Railway Sciences》 2025年第5期580-597,共18页
Purpose–Regarding that Ultraviolet radiation,pollutant adsorption,and environmental changes may be the main reasons for the aging and yellowing on windshield rubber in high-speed trains,countermeasures are proposed t... Purpose–Regarding that Ultraviolet radiation,pollutant adsorption,and environmental changes may be the main reasons for the aging and yellowing on windshield rubber in high-speed trains,countermeasures are proposed to solve the aging and yellowing of windshield rubber and reduce the adverse effects caused by rubber yellowing.Design/methodology/approach–Scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS)were used to test the yellowed windshield rubber.Aging tests,including UVaging,natural aging and salt spray aging,were conducted to analyze the effects of aging on the windshield rubber.Different cleaning agents were selected to soak the windshield rubber,and the quality,hardness,and surface appearance of the rubber samples were tested.Findings–After UV aging,antioxidants migrated to the surface of the windshield rubber,but due to oxidation failure,they could not capture free radicals,leading to continued oxidation reactions within the material and resulting in yellowing of the rubber in a short period of time.Originality/value–Cleaning agents have a minimal impact on windshield rubber,UV aging has the greatest impact and natural aging is a gradual and slow deterioration process.Through daily deep cleaning and maintenance with protective agents at regular intervals,the deterioration of windshield rubber yellowing in high-speed trains can be effectively suppressed. 展开更多
关键词 high-speed train Windshield rubber Aging and yellowing COUNTERMEASURES
在线阅读 下载PDF
Adaptive polynomial approximation-based virtual coupled cooperative control for high-speed trains
8
作者 Kai-Xiang Wang Ming-Yue Ren +1 位作者 Qian-Ling Wang Xue Lin 《Chinese Physics B》 2025年第10期589-596,共8页
Virtual coupling is a novel technology that enables trains to run closely together without physical connections through communication and automation systems.The paper addresses an adaptive polynomial approximation alg... Virtual coupling is a novel technology that enables trains to run closely together without physical connections through communication and automation systems.The paper addresses an adaptive polynomial approximation algorithm for the cooperative control of high-speed trains(HSTs)under virtual coupling.It aims to solve the cooperative tracking control problem of HST formation operations under various scenarios,including known and unknown parameters.To enable the HST formation system to achieve cooperative operation while ensuring an appropriate spacing distance,the tracking errors of displacement and speed throughout the entire operation converge to zero.The proposed control strategy focuses on adopting polynomial approximation to handle unknown parameters,which are estimated via adaptive laws.Additionally,the unknown parameters of the HSTs are estimated online through adaptive laws.Experimental results verify the effectiveness of this method. 展开更多
关键词 high-speed trains(HSTs) cooperative operation adaptive polynomial approximation virtual coupling
原文传递
Dynamic Modeling of the Three-Dimensional Seated Human Body for High-Speed Train Ride Comfort Analysis
9
作者 Hanwen Xu Xinbiao Xiao +4 位作者 Xiaoqing Dong Jian Han Peng Chen Qin Hu Xuesong Jin 《Chinese Journal of Mechanical Engineering》 2025年第5期478-507,共30页
Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car bo... Typically,seat or floor acceleration is used to evaluate the ride comfort of a high-speed train.However,the dynamic performance of the human body significantly differs from that of the floor.Therefore,using the car body floor and seat accelerations to calculate the ride comfort index of a high-speed train may not reflect the true feelings of passengers.In this study,a 3D human-seat-vehicle-track coupling model was established to investigate the ride comfort of highspeed train passengers.The seated human model,which considers the longitudinal,lateral,vertical,pitching,yawing,and rolling motions,comprises the head,upper torso,lower torso,pelvis,thighs,and shanks.The model parameters were determined using multi-axis excitation measurement data based on a genetic algorithm.Subsequently,the applicability of the small-angle assumption and natural modes of the human model is analyzed.Using the coupling system model,the vibration characteristics of the human-seat interaction surface were analyzed.The ride comfort of the high-speed train and human body dynamic performance were analyzed under normal conditions,track geometric irregularities and train meeting conditions.The results showed that the passenger seats in the front and rear rows adjacent to the window had a higher acceleration value than the others.The human backrest and seat pad connection points have higher vibration amplitudes than the car body floor in the human-sensitive frequency range,indicating that using the acceleration values on the floor may underestimate the discomfort of passengers.The ride comfort of high-speed trains diminishes in the presence of track geometric irregularities and when trains pass each other.When the excitation frequency of track geometry irregularities approached the natural frequency of the human-seat-vehicle system,ride comfort in high-speed trains decreased significantly.Moreover,using seat acceleration to evaluate passenger ride comfort overlooks the vibration characteristics of the human body.The transient aerodynamic force generated when the train meets can cause a larger car body roll and lateral motion at 2 Hz,which,in turn,decreases the passenger ride comfort.This study presents a detailed human-seat-vehicle-track coupling system that can reflect a passenger’s dynamic performance under complex operating conditions. 展开更多
关键词 Seated human body high-speed train Ride comfort 3D Human body-seat-vehicle-track coupling coupled model
在线阅读 下载PDF
Research on the rapid diagnosis method for hunting of high-speed trains
10
作者 Wanru Xie Yixin Zhao +3 位作者 Gang Zhao Fei Yang Zilong Wei Jinzhao Liu 《Railway Sciences》 2025年第1期1-21,共21页
Purpose–High-speed turnouts are more complex in structure and thus may cause abnormal vibration of highspeed train car body,affecting driving safety and passenger riding experience.Therefore,it is necessary to analyz... Purpose–High-speed turnouts are more complex in structure and thus may cause abnormal vibration of highspeed train car body,affecting driving safety and passenger riding experience.Therefore,it is necessary to analyze the data characteristics of continuous hunting of high-speed trains passing through turnouts and propose a diagnostic method for engineering applications.Design/methodology/approach–First,Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)is performed to determine the first characteristic component of the car body’s lateral acceleration.Then,the Short-Time Fourier Transform(STFT)is performed to calculate the marginal spectra.Finally,the presence of a continuous hunting problem is determined based on the results of the comparison calculations and diagnostic thresholds.To improve computational efficiency,permutation entropy(PE)is used as a fast indicator to identify turnouts with potential problems.Findings–Under continuous hunting conditions,the PE is less than 0.90;the ratio of the maximum peak value of the signal component to the original signal peak value exceeded 0.7,and there is an energy band in the STFT time-frequency map,which corresponds to a frequency distribution range of 1–2 Hz.Originality/value–The research results have revealed the lateral vibration characteristics of the high-speed train’s car body during continuous hunting when passing through turnouts.On this basis,an effective diagnostic method has been proposed.With a focus on practical engineering applications,a rapid screening index for identifying potential issues has been proposed,significantly enhancing the efficiency of diagnostic processes. 展开更多
关键词 high-speed railway Periodic hunting Rapid diagnosis CEEMDAN STFT Permutation entropy
在线阅读 下载PDF
Shrinking India:Visualizing time-space implication of introduction of semihigh-speed trains in India
11
作者 Vimal Kumar Arulmozhi Shreyas P.Bharule 《High-Speed Railway》 2025年第2期93-104,共12页
Indian Railways have been the largest people moving transport infrastructure in India.Over the years the systems and trains have been upgraded resulting in both better passenger amenities and reduction in travel time.... Indian Railways have been the largest people moving transport infrastructure in India.Over the years the systems and trains have been upgraded resulting in both better passenger amenities and reduction in travel time.The newest addition is the Vande Bharat Express,a semi-high-speed train that was introduced in India in 2019.The train currently runs between 10 routes and has brought significant changes to India’s railway network.This article explores the introduction of Vande Bharat Express trains in India and its effects on the country’s interstation time-space shrinkage using cartographic techniques.The cartographic techniques like stepwise multidimensional scaling and interpolation using the distance cartogram plugin in QGIS are mainly used for generating the time-space maps for various speeds.The limitations of these techniques and the methods to overcome those limitations are also explored in this article. 展开更多
关键词 Vande Bharat trains Multidimensional scaling INTERPOLATION Time-space Map distortion
在线阅读 下载PDF
The Influence of an Imposed Jet and Front and Rear Wall Modification on Aerodynamic Noise in High-Speed Train Cavities
12
作者 Yangyang Cao Jiye Zhang +1 位作者 Jiawei Shi Yao Zhang 《Fluid Dynamics & Materials Processing》 2025年第5期1079-1098,共20页
The pantograph area is a critical source of aerodynamic noise in high-speed trains,generating noise both directly and through its cavity,a factor that warrants considerable attention.One effective method for reducing ... The pantograph area is a critical source of aerodynamic noise in high-speed trains,generating noise both directly and through its cavity,a factor that warrants considerable attention.One effective method for reducing aerodynamic noise within the pantograph cavity involves the introduction of a jet at the leading edge of the cavity.This study investigates the mechanisms driving cavity aerodynamic noise under varying jet velocities,using Improved Delayed Detached Eddy Simulation(IDDES)and Ffowcs Williams-Hawkings(FW-H)equations.The numerical simulations reveal that an increase in jet velocity results in a higher elevation of the shear layer above the cavity.This elevation,in turn,diminishes the interaction area between the vortices produced by jet shedding and the trailing edge of the cavity wall.Consequently,the amplitude of pressure pulsations on the cavity surface is reduced,leading to a decrease in radiated far-field noise.Specifically,simulations conducted with a jet velocity of 111.11 m/s indicate a remarkable noise reduction of approximately 4 dB attributable to this mechanism.To further enhance noise mitigation,alterations to the inclination angles of the cavity’s front and rear walls are also explored.The findings demonstrate that,at a constant jet velocity,such modifications significantly diminish pressure pulsations at the intersection of the rear wall and cavity floor,optimizing overall noise reduction and achieving a maximum reduction of approximately 6 dB. 展开更多
关键词 High speed train CAVITY jet flow aerodynamic noise inclination angle modification
在线阅读 下载PDF
Optimizing high-speed train tracking intervals with an improved multi-objective grey wolf
13
作者 Lin Yue Meng Wang +1 位作者 Peng Wang Jinchao Mu 《Railway Sciences》 2025年第3期322-336,共15页
Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation effi... Purpose-With the rapid advancement of China’s high-speed rail network,the density of train operations is on the rise.To address the challenge of shortening train tracking intervals while enhancing transportation efficiency,the multi-objective dynamic optimization of the train operation process has emerged as a critical issue.Design/methodology/approach-Train dynamic model is established by analyzing the force of the train in the process of tracing operation.The train tracing operation model is established according to the dynamic mechanical model of the train tracking process,and the dynamic optimization analysis is carried out with comfort,energy saving and punctuality as optimization objectives.To achieve multi-objective dynamic optimization,a novel train tracking operation calculation method is proposed,utilizing the improved grey wolf optimization algorithm(MOGWO).The proposed method is simulated and verified based on the train characteristics and line data of CR400AF electric multiple units.Findings-The simulation results prove that the optimized MOGWO algorithm can be computed quickly during train tracks,the optimum results can be given within 5s and the algorithm can converge effectively in different optimization target directions.The optimized speed profile of the MOGWO algorithm is smoother and more stable and meets the target requirements of energy saving,punctuality and comfort while maximally respecting the speed limit profile.Originality/value-The MOGWO train tracking interval optimization method enhances the tracking process while ensuring a safe tracking interval.This approach enables the trailing train to operate more comfortably,energy-efficiently and punctually,aligning with passenger needs and industry trends.The method offers valuable insights for optimizing the high-speed train tracking process. 展开更多
关键词 Tracking running train dynamics model Multi-objective optimization MOGWO CR400AF electric multiple units
在线阅读 下载PDF
Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train 被引量:30
14
作者 Yue WU Xing DU +2 位作者 He-ji ZHANG Ze-feng WEN Xue-song JIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第8期579-592,共14页
This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance... This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day. 展开更多
关键词 high-speed train WHEEL High-order polygonal wear Field test Model analysis System resonance frequency
原文传递
Dynamic analysis of a high-speed train operating on a curved track with failed fasteners 被引量:21
15
作者 Li ZHOU Zhi-yun SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第6期447-458,共12页
A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of... A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h. 展开更多
关键词 high-speed train Ballast track Failed fastener Wheel/Rail force Derailment coefficient Wheelset loading reduction
原文传递
Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions 被引量:18
16
作者 Xue-ming SHAO Jun WAN +1 位作者 Da-wei CHEN Hong-bing XIONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第12期964-970,共7页
With the development of high-speed train,it is considerably concerned about the aerodynamic characteristics and operation safety issues of the high-speed train under extreme weather conditions.The aerodynamic performa... With the development of high-speed train,it is considerably concerned about the aerodynamic characteristics and operation safety issues of the high-speed train under extreme weather conditions.The aerodynamic performance of a high-speed train under heavy rain and strong crosswind conditions are modeled using the Eulerian two-phase model in this paper.The impact of heavy rainfall on train aerodynamics is investigated,coupling heavy rain and a strong crosswind.Results show that the lift force,side force,and rolling moment of the train increase significantly with wind speed up to 40 m/s under a rainfall rate of 60 mm/h.when considering the rain and wind conditions.The increases of the lift force,side force,and rolling moment may deteriorate the train operating safety and cause the train to overturn.A quasi-static stability analysis based on the moment balance is used to determine the limit safety speed of a train under different rain and wind levels.The results can provide a frame of reference for the train safe operation under strong rain and crosswind conditions. 展开更多
关键词 high-speed train Aerodynamic characteristics Multiphase flow RAIN CROSSWIND OVERTURNING
原文传递
Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains 被引量:16
17
作者 Ning Zhu Shou-Guang Sun +1 位作者 Qiang Li Hua Zou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期901-909,共9页
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-sta... One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains.The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames.Moreover,a force-measuring frame is designed and manufactured based on the quasi-static load series.The load decoupling model of the quasi-static load series is then established via calibration tests.Quasi-static load–time histories,together with online tests and decoupling analysis,are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line.The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm.The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames. 展开更多
关键词 Load spectra QUASI-STATIC Bogie frame CALIBRATION high-speed train
在线阅读 下载PDF
Multi-objective optimization design method of the high-speed train head 被引量:22
18
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 high-speed train Multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds 被引量:18
19
作者 HE Xu-hui ZUO Tai-hui +2 位作者 ZOU Yun-feng YAN Lei TANG Lin-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2465-2478,共14页
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur... In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section. 展开更多
关键词 high-speed train viaducts aerodynamic characteristics turbulent crosswinds wind attack angle train section shape track position pressure measurement
在线阅读 下载PDF
Effect of simplifying bogie regions on aerodynamic performance of high-speed train 被引量:17
20
作者 ZHANG Jie ADAMU Abdulmalik +2 位作者 SU Xin-chao GUO Zhan-hao GAO Guang-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1717-1734,共18页
An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody s... An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains. 展开更多
关键词 high-speed train aerodynamic drag RANS method BOGIE bogie cavity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部