Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock st...Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.展开更多
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rock...With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions.展开更多
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule...The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges.展开更多
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was...Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.展开更多
Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques desig...Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.展开更多
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer...Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.展开更多
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ...The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.展开更多
A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of ...A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.展开更多
This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequen...This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island.展开更多
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive...Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.展开更多
Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and effic...Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Individual Tree Detection-and-Counting(ITDC)is among the important tasks in town areas,and numerous methods are proposed in this direction.Despite their many advantages,still,the proposed methods are inadequate to pro...Individual Tree Detection-and-Counting(ITDC)is among the important tasks in town areas,and numerous methods are proposed in this direction.Despite their many advantages,still,the proposed methods are inadequate to provide robust results because they mostly rely on the direct field investigations.This paper presents a novel approach involving high-resolution imagery and the Canopy-Height-Model(CHM)data to solve the ITDC problem.The new approach is studied in six urban scenes:farmland,woodland,park,industrial land,road and residential areas.First,it identifies tree canopy regions using a deep learning network from high-resolution imagery.It then deploys the CHM-data to detect treetops of the canopy regions using a local maximum algorithm and individual tree canopies using the region growing.Finally,it calculates and describes the number of individual trees and tree canopies.The proposed approach is experimented with the data from Shanghai,China.Our results show that the individual tree detection method had an average overall accuracy of 0.953,with a precision of 0.987 for woodland scene.Meanwhile,the R^(2) value for canopy segmentation in different urban scenes is greater than 0.780 and 0.779 for canopy area and diameter size,respectively.These results confirm that the proposed method is robust enough for urban tree planning and management.展开更多
Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling ...Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling method,two typical types of outbursts,i.e.the gas pocket outburst and the dynamic fracturing outburst,have been successfully simulated using field data from a coalfield in central China.The geological structure commonly observed in the coalfield,known as the‘bedding shear zone’,contributes to the gas pocket outbursts in the region.The model for this type of outburst simulates mininginduced stress and gas pressure distributions during the outburst initiation stage and the subsequent development stage.Both coal ejection and gas release are observed in the model,and the simulation results are consistent with mine site observations,i.e.the amount of ejected coal,outburst cavity profile,and gas release rate change prior to an outburst.The second type of outburst is attributed to gas accumulation and elevated gas pressure due to the gassy floor seam and the heterogeneity in the floor strata,which is explained by the dynamic fracturing theory.While the dynamic coal ejection phenomenon is not captured in the simulation,the abrupt release of retained gas from a floor coal seam is successfully replicated.Both outburst models reveal that abnormal gas emission trends can be used as indicators of an upcoming outburst.The results of this study are expected to provide new insights into the outburst initiation mechanisms and outburst prevention measures.展开更多
In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicle...In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.展开更多
Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or a...Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or alloys.They offer several benefits,such as high specific strength,low corrosion,delayed cavitation,improved dynamic stability,reduced noise levels,and overall energy efficiency.In addition,composite materials undergo passive deformation,termed as“bend-twist effect”,under hydrodynamic loads due to their inherent flexibility and anisotropy.Although performance analysis methods were developed in the past for marine propellers,there is a significant lack of literature on composite propellers.This article discusses the recent advancements in experimental and numerical modelling,state-of-the-art computational technologies,and mutated mathematical models that aid in designing,analysing,and optimising composite marine propellers.In the initial sections,performance evaluation methods and challenges with the existing propeller materials are discussed.Thereafter,the benefits of composite propellers are critically reviewed.Numerical and experimental FSI coupling methods,cavitation performance,the effect of stacking sequence,and acoustic measurements are some critical areas discussed in detail.A two-way FSI-coupled simulation was conducted in a non-cavitating regime for four advanced ratios and compared with the literature results.Finally,the scope for future improvements and conclusions are mentioned.展开更多
With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ...With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications.展开更多
Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ra...Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes.展开更多
Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fract...Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fracture behavior,neglecting the combined influence of grain size and temperature on fracture behavior.This study employs specimens based on the particle flow code-grain based model to scrutinize the influence of temperature and grain size discrepancies on the fracture characteristics of sandstone.In pursuit of this goal,we manufactured ninety-six semi-circular bend specimens with grain sizes spanning from 0.5 mm to 1.5 mm,predicated on the mineral composition of sandstone.Recognizing the significance of intra-granular and inter-granular fractures,the grains were considered deformable and susceptible to breakage.The numerical model was calibrated using the results of uniaxial compressive strength(UCS)and Brazilian tests.We implemented thermo-mechanical coupled analysis to simulate mode Ⅰ,mode Ⅱ,and mixed mode(Ⅰ-Ⅱ)fracture toughness tests and subsequently studied alterations in the fracture behavior of sandstone at temperatures from 25℃ to 700℃.Our findings revealed increased fracture toughness as the temperature escalated from 25℃ to 200℃.However,beyond the threshold of 200℃,we noted a decline in fracture toughness.More specifically,the drop in mode Ⅰ fracture toughness was more pronounced in specimens with finer grains than those with coarser grains.Contrarily,the trend was reversed for mode Ⅱ fracture toughness.In contrast,the reduction of mixed mode(Ⅰ-Ⅱ)fracture toughness seemed almost linear across all grain sizes.Furthermore,we identified a correlation between temperature and grain size and their collective impact on crack propagation patterns.Comparing our results with established theoretical benchmarks,we confirmed that both temperature and grain size variations influence the fracture envelopes of sandstone.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:52192691,52192690。
文摘Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金funded by the National Natural Science Foundation of China(Nos.42077228,52174085)。
文摘With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions.
基金supported by the Zhejiang Provincial Key Research and Development Program of China(No.2020C01020).
文摘The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242213,U2142213,42305167,42175105)。
文摘Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.
基金supported by the National Natural Science Foundation project“Micro-Scale Effect of Oil-Gas Flow and the Mechanism of Enhancing Shale Oil Recovery by Natural Gas Injection”(No.52074317)。
文摘Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production,yet direct,targeted solutions remain elusive.In recent years,chemical flooding techniques designed for tertiary oil recovery have garnered significant attention,with microgel flooding emerging as a particularly prominent area of research.Despite its promise,the complex mechanisms underlying microgel flooding have been rarely investigated numerically.This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures.To enhance the accuracy of these characterizations,the viscosity of microgels is adjusted to account for the shear effects induced by flow rate and the swelling effects driven by salinity variations.The absolute permeability of the rock and the relative permeability of both oil and microgel are also analyzed to elucidate the mechanisms of microgel flooding.Additionally,a connectivity model is employed to achieve a quantitative representation of fluid flow capacity.The proposed model is validated through conceptual examples and applied to real oilfield blocks,demonstrating its accuracy and practical applicability.
基金supported by the National Natural Science Foundation of China(52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(BYESS2023262)。
文摘Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model.
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Setup"NSAF"Joint Fund(No.U1430119)。
文摘The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.
基金supported by the National Natural Science Foundation of China(Grant No.52375340,51975263,52405366).
文摘A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.
基金Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(U21A6001)China Meteorological Administration Innovation and Develop-ment Project(CXFZ2021Z008)Hainan Provincial Meteorolo-gical Bureau Business Improvement Project(hnqxSJ202101)。
文摘This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island.
基金support from the National Key R&D plan(Grant No.2022YFC3004303)the National Natural Science Foundation of China(Grant No.42107161)+3 种基金the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(sklhse-2023-C-01)the Open Research Fund Program of Key Laboratory of the Hydrosphere of the Ministry of Water Resources(mklhs-2023-04)the China Three Gorges Corporation(XLD/2117).
文摘Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.
基金supported by the National Natural Science Foundation of China (grant numbers: 41874160 and 92055213)。
文摘Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金supported by the project funded by International Research Center of Big Data for Sustainable 740 Development Goals[Grant Number CBAS2022GSP07]Fundamental Research Funds for the Central Universities,Chongqing Natural Science Foundation[Grant Number CSTB2022NSCQMSX 2069]Ministry of Education of China[Grant Number 19JZD023].
文摘Individual Tree Detection-and-Counting(ITDC)is among the important tasks in town areas,and numerous methods are proposed in this direction.Despite their many advantages,still,the proposed methods are inadequate to provide robust results because they mostly rely on the direct field investigations.This paper presents a novel approach involving high-resolution imagery and the Canopy-Height-Model(CHM)data to solve the ITDC problem.The new approach is studied in six urban scenes:farmland,woodland,park,industrial land,road and residential areas.First,it identifies tree canopy regions using a deep learning network from high-resolution imagery.It then deploys the CHM-data to detect treetops of the canopy regions using a local maximum algorithm and individual tree canopies using the region growing.Finally,it calculates and describes the number of individual trees and tree canopies.The proposed approach is experimented with the data from Shanghai,China.Our results show that the individual tree detection method had an average overall accuracy of 0.953,with a precision of 0.987 for woodland scene.Meanwhile,the R^(2) value for canopy segmentation in different urban scenes is greater than 0.780 and 0.779 for canopy area and diameter size,respectively.These results confirm that the proposed method is robust enough for urban tree planning and management.
基金the National Natural Science Foundation of China(52304105)National Natural Science Foundation of China-National major scientific research instrument development project(52227901)Jiangsu Province International Collaboration Program-Key national industrial technology research and development cooperation projects(BZ2023050).
文摘Numerical modelling is an effective technique to improve the understanding of outburst initiation mechanisms and to take appropriate measures to address their threats.Based on the existing two-way sequential coupling method,two typical types of outbursts,i.e.the gas pocket outburst and the dynamic fracturing outburst,have been successfully simulated using field data from a coalfield in central China.The geological structure commonly observed in the coalfield,known as the‘bedding shear zone’,contributes to the gas pocket outbursts in the region.The model for this type of outburst simulates mininginduced stress and gas pressure distributions during the outburst initiation stage and the subsequent development stage.Both coal ejection and gas release are observed in the model,and the simulation results are consistent with mine site observations,i.e.the amount of ejected coal,outburst cavity profile,and gas release rate change prior to an outburst.The second type of outburst is attributed to gas accumulation and elevated gas pressure due to the gassy floor seam and the heterogeneity in the floor strata,which is explained by the dynamic fracturing theory.While the dynamic coal ejection phenomenon is not captured in the simulation,the abrupt release of retained gas from a floor coal seam is successfully replicated.Both outburst models reveal that abnormal gas emission trends can be used as indicators of an upcoming outburst.The results of this study are expected to provide new insights into the outburst initiation mechanisms and outburst prevention measures.
基金funded by Zhejiang Province Spearhead and Leading Goose Research and Development Key Program,grant number 2023C01239.
文摘In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.
基金Supporting by the project‘FILE NO.CRG/2022/001718’.
文摘Understanding the behaviour of composite marine propellers during operating conditions is a need of the present era since they emerge as a potential replacement for conventional propeller materials such as metals or alloys.They offer several benefits,such as high specific strength,low corrosion,delayed cavitation,improved dynamic stability,reduced noise levels,and overall energy efficiency.In addition,composite materials undergo passive deformation,termed as“bend-twist effect”,under hydrodynamic loads due to their inherent flexibility and anisotropy.Although performance analysis methods were developed in the past for marine propellers,there is a significant lack of literature on composite propellers.This article discusses the recent advancements in experimental and numerical modelling,state-of-the-art computational technologies,and mutated mathematical models that aid in designing,analysing,and optimising composite marine propellers.In the initial sections,performance evaluation methods and challenges with the existing propeller materials are discussed.Thereafter,the benefits of composite propellers are critically reviewed.Numerical and experimental FSI coupling methods,cavitation performance,the effect of stacking sequence,and acoustic measurements are some critical areas discussed in detail.A two-way FSI-coupled simulation was conducted in a non-cavitating regime for four advanced ratios and compared with the literature results.Finally,the scope for future improvements and conclusions are mentioned.
文摘With different structural forms of ventilation pipes have various attenuation effects on incident shock waves while meeting ventilation requirements.The attenuation mechanism and the propagation law of shock waves in ventilation pipes of different structures are investigated by experiments and numerical simulations.Furthermore,for the same structure,the effects of peak pressure and positive pressure time on the attenuation rate are discussed.It is found that the attenuation rate increases with the incident shock wave pressure,and the shock wave attenuation rate tends to reach its limiting value k for the same structure and reasonably short positive pressure time.Under the same conditions,the attenuation rate is calculated using the pressure of the shock wave as follows:diffusion chamber pipe,branch pipe and selfconsumption pipe;the attenuation rate per unit volume is calculated as follows:self-consumption pipe,branch pipe and diffusion chamber pipe.In addition,an easy method is provided to calculate the attenuation rate of the shock wave in single and multi-stage ventilation pipes.Corresponding parameters are provided for various structures,and the margin of error between the formulae and experimental results is within 10%,which is significant for engineering applications.
文摘Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes.
文摘Understanding the fracture behavior of rocks subjected to temperature and accounting for the rock's texture is vital for safe and efficient design.Prior studies have often focused on isolated aspects of rock fracture behavior,neglecting the combined influence of grain size and temperature on fracture behavior.This study employs specimens based on the particle flow code-grain based model to scrutinize the influence of temperature and grain size discrepancies on the fracture characteristics of sandstone.In pursuit of this goal,we manufactured ninety-six semi-circular bend specimens with grain sizes spanning from 0.5 mm to 1.5 mm,predicated on the mineral composition of sandstone.Recognizing the significance of intra-granular and inter-granular fractures,the grains were considered deformable and susceptible to breakage.The numerical model was calibrated using the results of uniaxial compressive strength(UCS)and Brazilian tests.We implemented thermo-mechanical coupled analysis to simulate mode Ⅰ,mode Ⅱ,and mixed mode(Ⅰ-Ⅱ)fracture toughness tests and subsequently studied alterations in the fracture behavior of sandstone at temperatures from 25℃ to 700℃.Our findings revealed increased fracture toughness as the temperature escalated from 25℃ to 200℃.However,beyond the threshold of 200℃,we noted a decline in fracture toughness.More specifically,the drop in mode Ⅰ fracture toughness was more pronounced in specimens with finer grains than those with coarser grains.Contrarily,the trend was reversed for mode Ⅱ fracture toughness.In contrast,the reduction of mixed mode(Ⅰ-Ⅱ)fracture toughness seemed almost linear across all grain sizes.Furthermore,we identified a correlation between temperature and grain size and their collective impact on crack propagation patterns.Comparing our results with established theoretical benchmarks,we confirmed that both temperature and grain size variations influence the fracture envelopes of sandstone.