期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS_(2) in high-resolution transmission electron microscopy 被引量:1
1
作者 Yu Meng Shuya Wang +5 位作者 Xibiao Ren Han Xue Xuejun Yue Chuanhong Jin Shanggang Lin Fang Lin 《Chinese Physics B》 2025年第1期162-170,共9页
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co... High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability. 展开更多
关键词 aberration measurement high-resolution transmission electron microscopy feature-extraction networks exit-wave reconstruction monolayer MoS_(2)
原文传递
Integrating high-resolution mass spectrometry and transcriptomics to explore the therapeutic mechanism of Sanhuang Oil in diabetic foot
2
作者 Ping Sun Yu-Feng Zhang +4 位作者 Shuang Li Wei Zhang Peng-Fei Zhao Chen-Xia Li Chen-Ning Zhang 《Traditional Medicine Research》 2026年第1期19-38,共20页
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-... Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers. 展开更多
关键词 Sanhuang Oil diabetic foot high-resolution mass spectrometry molecular network analysis mechanism of action
暂未订购
基于改进HRNet和椭圆拟合的PDC钻头复合片磨损定级方法
3
作者 程占波 熊凌 +3 位作者 丁昕 陈刚 叶道辉 李姝凡 《石油机械》 北大核心 2025年第8期25-34,43,共11页
针对目前PDC钻头复合片磨损定级存在效率低、标准性差、精度不足等问题,提出一种基于改进HRNet和椭圆拟合的磨损定级方法。使用语义分割算法对复合片轮廓进行提取,使用深度可分离卷积替换HRNet网络的普通卷积,对网络特征提取层的4个不... 针对目前PDC钻头复合片磨损定级存在效率低、标准性差、精度不足等问题,提出一种基于改进HRNet和椭圆拟合的磨损定级方法。使用语义分割算法对复合片轮廓进行提取,使用深度可分离卷积替换HRNet网络的普通卷积,对网络特征提取层的4个不同分辨率输出通过CGAF模块进行特征融合,同时对融合特征图引入EMA注意力模块。通过RANSAC椭圆拟合算法进行数据预处理、拟合椭圆筛选及内点补充,进而提高分割复合片的拟合精度。并对复合片进行磨损定级。试验结果表明:改进后的HRNet网络平均交并比、类别平均像素准确率与原HRNet网络相比达到97.60%和98.79%,参数量降低72%,模型大小减小70%,定级准确率达到96.5%,单张复合片定级所需平均时间仅为0.261 s。所得结论可为油田降低钻井成本提供理论参考。 展开更多
关键词 PDC钻头复合片 磨损定级 hrnet网络模型 椭圆拟合 CGAF模块 语义分割
在线阅读 下载PDF
Full Scale-Aware Balanced High-Resolution Network for Multi-Person Pose Estimation
4
作者 Shaohua Li Haixiang Zhang +2 位作者 HanjieMa Jie Feng Mingfeng Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3379-3392,共14页
Scale variation is amajor challenge inmulti-person pose estimation.In scenes where persons are present at various distances,models tend to perform better on larger-scale persons,while the performance for smaller-scale... Scale variation is amajor challenge inmulti-person pose estimation.In scenes where persons are present at various distances,models tend to perform better on larger-scale persons,while the performance for smaller-scale persons often falls short of expectations.Therefore,effectively balancing the persons of different scales poses a significant challenge.So this paper proposes a newmulti-person pose estimation model called FSANet to improve themodel’s performance in complex scenes.Our model utilizes High-Resolution Network(HRNet)as the backbone and feeds the outputs of the last stage’s four branches into the DCB module.The dilated convolution-based(DCB)module employs a parallel structure that incorporates dilated convolutions with different rates to expand the receptive field of each branch.Subsequently,the attention operation-based(AOB)module performs attention operations at both branch and channel levels to enhance high-frequency features and reduce the influence of noise.Finally,predictions are made using the heatmap representation.The model can recognize images with diverse scales and more complex semantic information.Experimental results demonstrate that FSA Net achieves competitive results on the MSCOCO and MPII datasets,validating the effectiveness of our proposed approach. 展开更多
关键词 Computer vision high-resolution network human pose estimation
在线阅读 下载PDF
基于改进HRNet的高速公路路域内光伏板信息提取
5
作者 王靖凯 葛星彤 +2 位作者 李兆博 丁翔 彭玲 《测绘通报》 北大核心 2025年第5期74-78,99,共6页
随着绿色能源需求的日益增长,高速公路路域内光伏板基础设施成为可再生能源发展的一种重要途径。收费站和服务区作为高速公路路域的重要组成部分,其光伏发电也受到重视。本文研究了利用深度学习方法通过高分辨率遥感影像识别高速公路路... 随着绿色能源需求的日益增长,高速公路路域内光伏板基础设施成为可再生能源发展的一种重要途径。收费站和服务区作为高速公路路域的重要组成部分,其光伏发电也受到重视。本文研究了利用深度学习方法通过高分辨率遥感影像识别高速公路路域内收费站和服务区配置光伏板信息的技术方法。以江苏省作为研究试验区,下载全省谷歌19级遥感影像数据,通过制作样本,使用现有经典语义分割网络HRNet、ResNet、FCN和U-Net对试验区进行信息提取,获得光伏板信息提取结果;通过消融试验证实了本文融合CBAM注意力机制的HRNet语义分割网络提取效果最佳。该方法为高速公路路域内收费站和服务区的光伏板智能监测管理提供了技术支撑。 展开更多
关键词 高速公路路域内光伏 高分辨率遥感影像 改进的hrnet语义分割网络 CBAM注意力机制 江苏省试验区
原文传递
特征工程结合HRNet网络的景观分类研究
6
作者 崔金敏 《鞍山师范学院学报》 2025年第2期61-68,共8页
针对传统景观分类准确率不高的问题,提出一种特征工程结合HRNet网络的景观分类方法.首先对绿地植被特征、绿地植被物候特征、绿地植被纹理特征等进行提取,然后结合标准假彩色影像特征作为HRNet网络的输入,对特征进行融合,并实现遥感图... 针对传统景观分类准确率不高的问题,提出一种特征工程结合HRNet网络的景观分类方法.首先对绿地植被特征、绿地植被物候特征、绿地植被纹理特征等进行提取,然后结合标准假彩色影像特征作为HRNet网络的输入,对特征进行融合,并实现遥感图像中景观的分类.结果表明,景观绿地植被特征、植被物候特征、植被纹理特征与标准假彩色影像特征相融合,能够有效提高特征丰富度,改善景观绿地植被的分类性能;HRNet网络的损失函数优化与网络训练策略在保证网络训练有效性的同时,能够有效提高网络训练的速率;特征工程与HRNet网络相结合,使得遥感图像中景观分类性能明显提高.基于上述结果,说明以上方案能实现对景观绿地植被的准确分类. 展开更多
关键词 hrnet网络 绿地植被纹理特征 LBP算法 特征工程 景观分类 准确率
在线阅读 下载PDF
Context-Aware Feature Extraction Network for High-Precision UAV-Based Vehicle Detection in Urban Environments
7
作者 Yahia Said Yahya Alassaf +3 位作者 Taoufik Saidani Refka Ghodhbani Olfa Ben Rhaiem Ali Ahmad Alalawi 《Computers, Materials & Continua》 SCIE EI 2024年第12期4349-4370,共22页
The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.... The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments. 展开更多
关键词 Smart cities UAVS vehicle detection trafficmanagement intelligent transportation systems anchor-free detection high-resolution network context-aware feature extraction multi-head self-attention
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
8
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(hrnet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
融合局部感知增强的投篮上肢动作分解与高精度识别算法
9
作者 任宇飞 刘海林 《现代电子技术》 北大核心 2025年第18期119-124,共6页
为解决传统动作识别算法在处理篮球训练图像时存在的关节遮挡、感受野过大等问题,提出一种融合局部感知增强的高精度上肢动作分解识别模型。该模型通过轻量级HRNet分支提取人体全局结构特征,结合双流金字塔模块增强局部关节感知能力。... 为解决传统动作识别算法在处理篮球训练图像时存在的关节遮挡、感受野过大等问题,提出一种融合局部感知增强的高精度上肢动作分解识别模型。该模型通过轻量级HRNet分支提取人体全局结构特征,结合双流金字塔模块增强局部关节感知能力。空间流采用空洞卷积扩大手部感受野,时间流利用光流捕捉球员上肢的相对运动情况,显著提升了遮挡场景下的手部定位精度。同时,模型中还设计了时空分解模块进行空间与时序特征分析,强制网络聚焦并学习帧间的运动一致性,使数据处理的过程更具鲁棒性。最后引入自适应加权单元,最终输出高精度的关节点坐标。实验测试结果表明:所提模型的mAP@0.5达到86.9%,动作分类的F1值为95.3%,均优于目前的主流算法;且关键帧检出率为91.1%,帧率达到47 f/s,实时性良好,充分证明了该模型能够为篮球训练与赛事智能化分析提供可靠的技术手段。 展开更多
关键词 hrnet模型 双流金字塔 图卷积网络 时间卷积网络 人体动作识别 图像分析
在线阅读 下载PDF
结合注意力机制和多尺度特征融合的三维手部姿态估计
10
作者 郭诗月 党建武 +1 位作者 王阳萍 雍玖 《计算机应用》 北大核心 2025年第4期1293-1299,共7页
针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(S... 针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(SEM),以替换沙漏网络(HGNet)中的基本块(Basicblock),在扩大感受野的同时增强对空间信息的敏感性,从而提高手部特征的提取能力;其次,设计一种结合SPCNet(Spatial Preserve and Contentaware Network)和Soft-Attention改进的多尺度信息融合模块SS-MIFM(SPCNet and Soft-attention-Multi-scale Information Fusion Module),在充分考虑空间内容感知机制的情况下,有效地聚合多级特征,并显著提高二维手部关键点检测的准确性;最后,利用2.5D姿态转换模块将二维姿态转换为三维姿态,从而避免二维关键点坐标直接回归计算三维姿态信息导致的空间丢失问题。实验结果表明,在InterHand2.6M数据集上,所提算法的双手关节点平均误差(MPJPE)、单手MPJPE和根节点平均误差(MRRPE)分别达到了12.32、9.96和29.57 mm;在RHD(Rendered Hand pose Dataset)上,与InterNet和QMGR-Net算法相比,所提算法的终点误差(EPE)分别降低了2.68和0.38 mm。以上结果说明了所提算法能够更准确地估计手部姿态,且在一些双手交互和遮挡的场景下有更高的鲁棒性。 展开更多
关键词 手部姿态估计 多尺度特征融合 注意力机制 高分辨率网络 沙漏网络
在线阅读 下载PDF
基于多注意力机制的人体姿态检测模型
11
作者 于松正 谭钦红 《激光杂志》 北大核心 2025年第5期78-85,共8页
提出了一种以高分辨率网络(High Resolution Net,HRNet)为基础,融合多注意力机制的人体姿态检测模型,解决了HRNet忽略不同通道间特征信息的依赖关系以及对空间特征信息关注度不足的问题。从通道域与空间域两方面着手,设计了全局通道空... 提出了一种以高分辨率网络(High Resolution Net,HRNet)为基础,融合多注意力机制的人体姿态检测模型,解决了HRNet忽略不同通道间特征信息的依赖关系以及对空间特征信息关注度不足的问题。从通道域与空间域两方面着手,设计了全局通道空间注意力(GCSA)模块和全局分组坐标注意力(GGCA)模块,并将其分别引入至网络Layer1层与Stage层以扩大网络感受野,加强特征提取的全面性与多样性。最后使用深度可分离卷积(Depthwise Separable Convolution,DSC)代替网络中传统卷积以平衡网络改进所带来的参数量与计算量的增长。实验结果表明,提出的模型在COCO数据集上检测精度达到77.8%,在MPII数据集上准确度达到了91.7%。相较于基准网络HRNet准确度分别提高了3.4%和1.3%。且与其他常用姿态检测网络相比,本网络具有更高的检测精度,能够更好地应用于日常场景。 展开更多
关键词 人体姿态检测 hrnet 注意力机制 深度学习 卷积神经网络
原文传递
基于非全局依赖积分回归的轻量姿态估计网络 被引量:1
12
作者 佘本杰 苏树智 +2 位作者 朱彦敏 华健 王超 《计算机应用》 北大核心 2025年第3期972-977,共6页
基于热图检测的人体姿态估计网络取得了巨大的成功,然而由于冗余计算、量化误差以及热图解码的需求,基于热图检测的方法参数量较大。针对上述问题,设计基于非全局依赖积分回归的轻量姿态估计网络(Lite-NIRNet)。Lite-NIRNet通过局部卷积... 基于热图检测的人体姿态估计网络取得了巨大的成功,然而由于冗余计算、量化误差以及热图解码的需求,基于热图检测的方法参数量较大。针对上述问题,设计基于非全局依赖积分回归的轻量姿态估计网络(Lite-NIRNet)。Lite-NIRNet通过局部卷积(PConv)降低网络的冗余计算,从而使网络更加轻量。为缓解PConv导致的信息丢失问题,引入坐标注意力(CA)机制融合跨通道特征,以提升网络性能。此外,设计非全局依赖的积分回归(NIR)模块,通过该模块,网络可以融入坐标进行监督,从而减少量化误差对网络性能的影响。所提的NIR可有效降低传统积分回归在期望计算时产生的偏差,从而兼顾更好的学习梯度和更低的偏差。实验结果表明,Lite-NIRNet与较先进的高分辨率网络(HRNet)相比,在COCO验证集上的参数量和计算量分别降低了73.0%和63.4%,平均精度均值(mAP)不需要额外的热图解码即可达到72.8%;在MPII验证集上,Lite-NIRNet在网络性能和复杂度之间也能实现良好的平衡。 展开更多
关键词 姿态估计 高分辨率网络 局部卷积 坐标注意力 积分回归
在线阅读 下载PDF
基于轻量型高分辨率网络的手部姿态估计研究
13
作者 刘春宏 王松 +2 位作者 王赋攀 钦耀 田东生 《计算机与数字工程》 2025年第4期1106-1112,1213,共8页
针对手部姿态估计误差较大、手的姿态特征提取不充分等问题,论文提出一种以HRNet(High-Resolution Net-work)为基础的手部姿态估计算法。该算法采用并行连接高低分辨率子网的设计,增强手部姿态特征表示;结合高效通道注意力模块(ECA-Net)... 针对手部姿态估计误差较大、手的姿态特征提取不充分等问题,论文提出一种以HRNet(High-Resolution Net-work)为基础的手部姿态估计算法。该算法采用并行连接高低分辨率子网的设计,增强手部姿态特征表示;结合高效通道注意力模块(ECA-Net)和Ghost模块,提出一种轻量型网络模块Geff,用于替换原HRNet网络中的基础模块,达到降低网络参数量、提高关键点估计的准确度的效果。在多个公开数据集上进行手部姿态估计实验测试,实验结果验证了该算法的有效性和可行性。 展开更多
关键词 手部姿态估计 hrnet网络 轻量型 ECA-Net Ghost模块
在线阅读 下载PDF
基于高分辨率网络的轻量化人体姿态估计算法
14
作者 赵开 胡春燕 李菲菲 《电子科技》 2025年第9期93-100,共8页
针对人体姿态估计网络存在参数量大、复杂度高以及难以部署到移动设备和嵌入式平台的问题,文中基于高分辨率网络提出了一种结合了注意力机制与改进的特征融合方法的多尺度轻量化人体姿态估计网络。采用轻量化ShuffleNetV2基础模块构建网... 针对人体姿态估计网络存在参数量大、复杂度高以及难以部署到移动设备和嵌入式平台的问题,文中基于高分辨率网络提出了一种结合了注意力机制与改进的特征融合方法的多尺度轻量化人体姿态估计网络。采用轻量化ShuffleNetV2基础模块构建网络,并进行多尺度特征提取。采用双向特征金字塔融合模块取代原始特征融合方法,优化信息交互方式。在基础模块上融合全局上下文注意力模块,将全局空间信息聚合到通道上,进一步提升网络的特征提取能力。在COCO和MPII数据集上进行测试的结果表明,所提模型在性能、参数量和计算复杂度方面均优于其他主流轻量化网络。所提方法在保持较小参数量与运算复杂度的同时实现了与大型深度人体姿态估计网络相同的准确率。 展开更多
关键词 人体姿态估计 轻量化网络 特征融合 注意力机制 hrnet 计算机视觉 关键点 卷积神经网络
在线阅读 下载PDF
Aquaculture area extraction and vulnerability assessment in Sanduao based on richer convolutional features network model 被引量:4
15
作者 LIU Yueming YANG Xiaomei +3 位作者 WANG Zhihua LU Chen LI Zhi YANG Fengshuo 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1941-1954,共14页
Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area... Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts. 展开更多
关键词 AQUACULTURE area VULNERABILITY assessment Richer Convolutional Features(RCF)network model deep learning high-resolution REMOTE SENSING
在线阅读 下载PDF
Research on Facial Expression Capture Based on Two-Stage Neural Network
16
作者 Zhenzhou Wang Shao Cui +1 位作者 Xiang Wang JiaFeng Tian 《Computers, Materials & Continua》 SCIE EI 2022年第9期4709-4725,共17页
To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by exist... To generate realistic three-dimensional animation of virtual character,capturing real facial expression is the primary task.Due to diverse facial expressions and complex background,facial landmarks recognized by existing strategies have the problem of deviations and low accuracy.Therefore,a method for facial expression capture based on two-stage neural network is proposed in this paper which takes advantage of improved multi-task cascaded convolutional networks(MTCNN)and high-resolution network.Firstly,the convolution operation of traditional MTCNN is improved.The face information in the input image is quickly filtered by feature fusion in the first stage and Octave Convolution instead of the original ones is introduced into in the second stage to enhance the feature extraction ability of the network,which further rejects a large number of false candidates.The model outputs more accurate facial candidate windows for better landmarks recognition and locates the faces.Then the images cropped after face detection are input into high-resolution network.Multi-scale feature fusion is realized by parallel connection of multi-resolution streams,and rich high-resolution heatmaps of facial landmarks are obtained.Finally,the changes of facial landmarks recognized are tracked in real-time.The expression parameters are extracted and transmitted to Unity3D engine to drive the virtual character’s face,which can realize facial expression synchronous animation.Extensive experimental results obtained on the WFLW database demonstrate the superiority of the proposed method in terms of accuracy and robustness,especially for diverse expressions and complex background.The method can accurately capture facial expression and generate three-dimensional animation effects,making online entertainment and social interaction more immersive in shared virtual space. 展开更多
关键词 Facial expression capture facial landmarks multi-task cascaded convolutional networks high-resolution network animation generation
在线阅读 下载PDF
基于卷积神经网络的教育机器人智能AR教学系统与人机交互 被引量:1
17
作者 陈静漪 肖娜 《自动化与仪器仪表》 2024年第11期88-91,95,共5页
对基于卷积神经网络的教育机器人智能AR教学系统与人机交互进行研究,提出一种基于改进HRNet网络的手部姿态估计方法提高机器人智能AR教学系统对用户手势进行识别的速度与准确率。首先,在常用的人机交互流程的基础上,对提高机器人系统指... 对基于卷积神经网络的教育机器人智能AR教学系统与人机交互进行研究,提出一种基于改进HRNet网络的手部姿态估计方法提高机器人智能AR教学系统对用户手势进行识别的速度与准确率。首先,在常用的人机交互流程的基础上,对提高机器人系统指令识别正确率方法的整体框架进行设计,然后根据HRNet网络的缺点进行改进,即采用Ghost模块对HRNet网络结构中的传统卷积进行代替,解决了HRNet网络计算量大、运算复杂的问题;同时在HRNet网络残差结构中融入ECA-Net模块,进一步增强了网络模型对手部姿态特征信息的学习能力。实验结果显示:提出的基于改进HRNet网络的手部姿态估计方法具有可行性、有效性,且能够快速、精准地实现特征信息的提取,完成手部姿态估计任务,为教育机器人智能AR教学系统提供了更为高效的人机交互技术。 展开更多
关键词 教育机器人 智能AR教学系统 人机交互 hrnet网络 手部姿态估计
原文传递
图像级高光谱影像高分辨率特征网络分类方法 被引量:1
18
作者 孙一帆 刘冰 +2 位作者 余旭初 谭熊 余岸竹 《测绘学报》 EI CSCD 北大核心 2024年第1期50-64,共15页
基于深度学习的高光谱影像分类方法通常将高光谱影像切分为局部方块作为模型的输入,这不但限制了长距离空-谱信息关联的获取,还带来了大量额外的计算开销。以全局图像作为输入的图像级分类方法能够有效避免这些缺陷,然而,现有的基于全... 基于深度学习的高光谱影像分类方法通常将高光谱影像切分为局部方块作为模型的输入,这不但限制了长距离空-谱信息关联的获取,还带来了大量额外的计算开销。以全局图像作为输入的图像级分类方法能够有效避免这些缺陷,然而,现有的基于全卷积神经网络特征串行流动模式的图像级分类方法在信息恢复时的细节损失会导致分类精度低、分类图视觉效果差等问题。因此,本文提出一种基于HRNet的图像级高光谱影像快速分类方法,在全程保持高分辨率特征的基础上对影像的多重分辨率特征进行并行计算与交叉融合,从而缓解了传统特征串行流动模式造成的信息损失问题。同时,提出多分辨率特征联合监督和投票分类策略,进一步提升了模型分类性能。利用4组开源高光谱影像数据集对本文方法进行验证,试验结果表明,与现有的先进分类方法相比,本文方法能够取得具有竞争性的分类结果,同时显著减少训练和分类时长,在实际应用时更具时效性。为了保证方法的复现性,笔者将代码开源于https://github.com/sssssyf/fast-image-level-vote。 展开更多
关键词 高光谱影像分类 图像级 全卷积神经网络 hrnet
在线阅读 下载PDF
基于深度学习的行为识别方法 被引量:1
19
作者 忻腾浩 李菲菲 《电子科技》 2024年第10期64-70,共7页
基于深度学习行为识别算法的关键在于提高关键点提取的准确性和稳定性,以此来更准确地识别目标动作。然而,较多算法在目标特征提取阶段仅加入看似具有较好功能的注意力机制,忽略了不同注意力机制对不同模型和任务的影响。因此,文中提出... 基于深度学习行为识别算法的关键在于提高关键点提取的准确性和稳定性,以此来更准确地识别目标动作。然而,较多算法在目标特征提取阶段仅加入看似具有较好功能的注意力机制,忽略了不同注意力机制对不同模型和任务的影响。因此,文中提出了一种基于不同注意力机制的姿态估计算法模型。该方法通过比较不同注意力机制对模型的影响,进一步说明了选择注意力机制的重要性。同时,考虑到关键点提取的稳定性,对模型的初始化进行微调,通过增加权重判断网络层类别,选择更合适的初始化方法以提高性能。相较于基准网络模型,该模型在多尺度和无多尺度CrowdPose数据集上所有的评价指标均有所提升。其中,平均精度在两种情况下的提升均超过了1%。 展开更多
关键词 行为识别 姿态估计 计算机视觉 图卷积神经网络 关键点 hrnet 注意力机制 平均精度
在线阅读 下载PDF
Real-Time Safety Behavior Detection Technology of Indoors Power Personnel Based on Human Key Points
20
作者 杨坚 李聪敏 +5 位作者 洪道鉴 卢东祁 林秋佳 方兴其 喻谦 张乾 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期309-315,共7页
Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to impro... Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene. 展开更多
关键词 real-time behavior recognition human key points high-resolution network spatial-temporal graph convolutional network
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部