High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co...High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.展开更多
The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on met...The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.展开更多
In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models incr...In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.展开更多
While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used imag...While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.展开更多
Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a hig...Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.展开更多
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-...Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.展开更多
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol...During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.61971201)。
文摘High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
基金supported by the National Natural Science Foundation of China(61772179)Hunan Provincial Natural Science Foundation of China(2022JJ50016,2023JJ50095)+1 种基金the Science and Technology Plan Project of Hunan Province(2016TP1020)Double First-Class University Project of Hunan Province(Xiangjiaotong[2018]469,[2020]248).
文摘The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.
基金The National Natural Science Foundation of China under contract No.42425606the Basic Scientific Fund for the National Public Research Institute of China(Shu-Xingbei Young Talent Program)under contract No.2023S01+1 种基金the Ocean Decade International Cooperation Center Scientific and Technological Cooperation Project under contract No.GHKJ2024005China-Korea Joint Ocean Research Center Project under contract Nos PI-20240101(China)and 20220407(Korea).
文摘In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.
文摘While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.
基金funded by the General Program of National Natural Science Foundation of China(Grant No.42377467).
文摘Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.
基金supported by the Natural Science Foundation of Hubei Provincial Department of Education(D20232101)Shandong Second Medical University 2024 Affiliated Hospital(Teaching Hospital)Scientific Research Development Fund Project(2024FYQ026)+3 种基金the innovative Research Programme of Xiangyang No.1 People’s Hospital(XYY2023ZY01)Faculty Development Grants of Xiangyang No.1 People’s Hospital Affiliated to Hubei University of Medicine(XYY2023D05)Joint supported by Hubei Provincial Natural Science Foundation and Xiangyang of China(2025AFD091)Traditional Chinese Medicine Scientific Research Project of Hubei Provincial Administration of Traditional Chinese Medicine(ZY2025D019).
文摘Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.
基金Supported by the National Natural Science Foundation of China(U24B2031)National Key Research and Development Project(2018YFA0702504)"14th Five-Year Plan"Science and Technology Project of CNOOC(KJGG2022-0201)。
文摘During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.