Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as...Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources,and the resulting product was then utilized as a precursor for CF_(x).The resulting fluorinated biomass carbon has a high degree of fluorination,exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates.During the fluorination process,N,P-containing functional groups were removed from the crystalline lattice in the basal plane.This facilitates the formation of a defect-rich carbon matrix,enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds.Additionally,the abundant defects and porous structure promote Li^(+)diffusion.Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+migration,enhancing Li+transport efficiency.The prepared CF_(x)delivers material with a maximum specific capacity of 919 mAh·g^(-1),while maintaining a specific capacity of 702 mAh·g^(-1)at a high discharge current density of 20C(with a capacity retention rate of 76.4%).In this study,fluorinated N,P co-doped biomass carbon,exhibiting ultrahigh capacity and high-rate performance,was prepared for the first time,which can potentially advance the commercialization of CF_(x).展开更多
To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic an...To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.展开更多
The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the d...The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes.Herein,we investigate,for the first time,the Li-ion storage activity in LVO via Cl doping.Moreover,N-doped C coating was simultaneously achieved in the Cl doping process,resulting in synergistically improved reaction kinetics.As a result,the as-prepared Cl-doped Li_(3)VO_(4) coated with N-doped C(Cl-LVO@NC)electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g,which is the highest among all of the LVO-based electrodes.The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles.After 5000 cycles at 4.0 A/g,the discharge capacity can be maintained at 423.2 mAh/g,which is superior to most LVO-based electrodes.The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications.展开更多
Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy stor...Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.展开更多
P2-type layered transition-metal oxides with high energy density and rich variety have attracted extensive attention for sodium-ion batteries(SIBs)in grid-scale energy storage application,but they usually suffer from ...P2-type layered transition-metal oxides with high energy density and rich variety have attracted extensive attention for sodium-ion batteries(SIBs)in grid-scale energy storage application,but they usually suffer from sluggish kinetics and large volume change upon cycling.Herein,we designed a highperformance P2-type Na_(0.67)Ni_(0.31)Mn_(0.67)Mo_(0.02)O_(2)(NNMMO)cathode with regulated electronic environment and Na^(+)zigzag ordering modulation via high-valence Mo6+stabilization engineering.The achieved NNMMO cathode exhibits a high-rate capability with a reversible capacity of 77.2 m Ah/g at 10 C and a long cycle life with a capacity retention of 75%at 2 C after 1000 cycles.In addition,in situ X-ray diffraction and ex-situ X-ray absorption fine structure spectroscopy characterizations verify that the presence of Mo^(6+)also stabilizes the desodiated structure through a pinning effect,achieving an extremely low volume change of 1.04%upon Na^(+)extraction.The quantified diffusional analysis and theoretical calculations demonstrate that the Mo^(6+)-doping improves the Na+diffusion kinetics,optimizes the energy band structure and enhances the TM-O bond strength.Additionally,the as-fabricated pouch cells by paring NNMMO cathode and hard carbon anode show impressive cycling stability with an energy density of 296.7 Wh/kg.This study broadens the perspective for high-valence metal ion doping to obtain superior cathode materials and pave the way for developing high-energy-density SIBs.展开更多
Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by ...Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by limited cycle life and poor rate performance.Herein,an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate(LiPP)and spinel phase covered on top of the bulk layered phase,is developed for Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)using Li^(+)-conductor LiPP(denoted as LMNO@S-LiPP).With such a double-layer covered architecture,the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g^(−1)at 1 A·g^(−1)and retains 85.3%of the initial capacity after 300 cycles,so far,the best highrate electrochemical performance of all the previously reported LMNOs.The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg^(−1)(based on total weight of active materials in cathode and anode).Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture,which accelerates Li-ion diffusion,restrains oxygen release,inhibits interfacial side reactions,suppresses structural degradation during cycling.Moreover,this strategy is applicable for other high-energy-density cathodes,such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2),LiCoO_(2).Hence,this work presents a simple,cost-effective,scalable strategy for the development of high-performance cathode materials.展开更多
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin...Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.展开更多
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat...The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.展开更多
The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were...The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between...Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production.展开更多
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated...This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.展开更多
Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state b...Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.展开更多
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bott...Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.展开更多
The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experim...The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.展开更多
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
基金supported by Fujian Science and Technology Planning Projects of China(Nos.2022T3067 and 2023H0045)the Self-deployment Project Research Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX-2022-JQ12)the Self-deployment project of XIREM(No.2023GG02).
文摘Lithium/fluorinated carbon(Li/CF_(x))batteries are greatly limited in their applications mostly due to poor rate performances.In this study,N,P co-doped biomass carbon was synthesized using melamine and phytic acid as doping sources,and the resulting product was then utilized as a precursor for CF_(x).The resulting fluorinated biomass carbon has a high degree of fluorination,exceeding the specific capacity of commercial fluorinated graphite while also demonstrating exceptional performance at high discharge rates.During the fluorination process,N,P-containing functional groups were removed from the crystalline lattice in the basal plane.This facilitates the formation of a defect-rich carbon matrix,enhancing the F/C ratio by improving the fluorinated active sites and obtaining more highly active semi-ionic bonds.Additionally,the abundant defects and porous structure promote Li^(+)diffusion.Density functional theory calculations indicated that doping modification effectively reduces the energy barrier for Li+migration,enhancing Li+transport efficiency.The prepared CF_(x)delivers material with a maximum specific capacity of 919 mAh·g^(-1),while maintaining a specific capacity of 702 mAh·g^(-1)at a high discharge current density of 20C(with a capacity retention rate of 76.4%).In this study,fluorinated N,P co-doped biomass carbon,exhibiting ultrahigh capacity and high-rate performance,was prepared for the first time,which can potentially advance the commercialization of CF_(x).
基金Funded by the National Natural Science Foundation of China(51208396 and 21277017)the Fundamental Research Funds for the Central Universities(2013-Ia-36 and 2013-Ia-39)the Selfdetermined and Innovative Research Funds of WUT(136814016)
文摘To alleviate the main limitations of lithium ion diffusion rate and poor electronic conductivity for LiFePO4 cathode material, it is desirable to synthesize nano-size LiFePO4 material due to its enhanced electronic and lithium ion transport rates and thus an improved high-rate performance. However, our previous synthesized LiFePO4 nanorods only exhibited low high-rate and slightly unstable cycle performance. Possible reasons are the poor crystallization and Fe2+ oxidation of LiFePO4 nanorods prepared by hydrothermal method. In this paper, LiFePO4 nanorods were simply dealt with at 700 ℃ for 4 h under the protection of Ar and H2 mixture gas. The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry(CV). The experimental results indicated that the annealed LiFePO4 nanorods delivered an excellent cycling stability and obviously improved capacity of 150 mA·h·g-1 at 1C, and even 122 mA·h·g-1 at 5C.
基金supported by the National Natural Science Foundation of China(No.52101262)Distinguished Youth Foundation of Hubei Province(2019CFA084)+1 种基金Educational offi ce of Hubei Province(Q20201201)the 111 project(D20015).
文摘The safe operating voltage and low volume variation of Li_(3)VO_(4)(LVO)make it an ideal anode material for lithium(Li)-ion batteries.However,the insufficient understanding of the inner storage mechanism hinders the design of LVO-based electrodes.Herein,we investigate,for the first time,the Li-ion storage activity in LVO via Cl doping.Moreover,N-doped C coating was simultaneously achieved in the Cl doping process,resulting in synergistically improved reaction kinetics.As a result,the as-prepared Cl-doped Li_(3)VO_(4) coated with N-doped C(Cl-LVO@NC)electrodes deliver a discharge capacity of 884.1 mAh/g after 200 cycles at 0.2 A/g,which is the highest among all of the LVO-based electrodes.The Cl-LVO@NC electrodes also exhibit high-capacity retention of 331.1 mAh/g at 8.0 A/g and full capacity recovery after 5 periods of rate testing over 400 cycles.After 5000 cycles at 4.0 A/g,the discharge capacity can be maintained at 423.2 mAh/g,which is superior to most LVO-based electrodes.The Li-ion storage activity in LVO via Cl doping and significant improvement in the high-rate Li-ion storage reported in this work can be used as references for the design of advanced LVO-based electrodes for high-power applications.
基金financially supported by the National Key Research and Development Program of China(No.2024YFA1210602)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515140044)
文摘Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.
基金partly supported by the National Natural Science Foundation of China(Nos.12275189 and 11705015)Natural Science Foundation of the Jiangsu Higher Education Institutions(No.23KJA430001)Collaborative Innovation Center of Suzhou Nano Science&Technology。
文摘P2-type layered transition-metal oxides with high energy density and rich variety have attracted extensive attention for sodium-ion batteries(SIBs)in grid-scale energy storage application,but they usually suffer from sluggish kinetics and large volume change upon cycling.Herein,we designed a highperformance P2-type Na_(0.67)Ni_(0.31)Mn_(0.67)Mo_(0.02)O_(2)(NNMMO)cathode with regulated electronic environment and Na^(+)zigzag ordering modulation via high-valence Mo6+stabilization engineering.The achieved NNMMO cathode exhibits a high-rate capability with a reversible capacity of 77.2 m Ah/g at 10 C and a long cycle life with a capacity retention of 75%at 2 C after 1000 cycles.In addition,in situ X-ray diffraction and ex-situ X-ray absorption fine structure spectroscopy characterizations verify that the presence of Mo^(6+)also stabilizes the desodiated structure through a pinning effect,achieving an extremely low volume change of 1.04%upon Na^(+)extraction.The quantified diffusional analysis and theoretical calculations demonstrate that the Mo^(6+)-doping improves the Na+diffusion kinetics,optimizes the energy band structure and enhances the TM-O bond strength.Additionally,the as-fabricated pouch cells by paring NNMMO cathode and hard carbon anode show impressive cycling stability with an energy density of 296.7 Wh/kg.This study broadens the perspective for high-valence metal ion doping to obtain superior cathode materials and pave the way for developing high-energy-density SIBs.
基金the financial support from the Ministry of Science and Technology of China(MoST,No.52090034)the Higher Education Discipline Innovation Project(No.B12015).
文摘Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries(LIBs)due to their high specific capacity,high voltage,low cost.However,their commercialization is hindered by limited cycle life and poor rate performance.Herein,an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate(LiPP)and spinel phase covered on top of the bulk layered phase,is developed for Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)(LMNO)using Li^(+)-conductor LiPP(denoted as LMNO@S-LiPP).With such a double-layer covered architecture,the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g^(−1)at 1 A·g^(−1)and retains 85.3%of the initial capacity after 300 cycles,so far,the best highrate electrochemical performance of all the previously reported LMNOs.The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg^(−1)(based on total weight of active materials in cathode and anode).Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture,which accelerates Li-ion diffusion,restrains oxygen release,inhibits interfacial side reactions,suppresses structural degradation during cycling.Moreover,this strategy is applicable for other high-energy-density cathodes,such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2),LiCoO_(2).Hence,this work presents a simple,cost-effective,scalable strategy for the development of high-performance cathode materials.
文摘Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.
基金the Center of Lithium Battery Membrane Materials jointly established by School of Chemistry and Chemical Engineering of Huazhong University of Science and Technology and Shenzhen Senior Technology Material Co.Ltd.,the National Natural Science Foundation of China(52020105012,52303084)the Young Scientists Fund of Natural Science Foundation of Hubei Province(2023AFB220)for the support of this work.
文摘The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
文摘The available test methods for optimal moisture content of cold recycled mixture(CRM)as well as its bulk specific gravity,and theoretical maximum relative density were analyzed in this work.Some test improvements were suggested to improve test control of the CRM road performance based on the discovered flaws.Besides,the properties of reclaimed asphalt pavement(RAP),including the content of old asphalt,penetration index,passing rate of 4.75 mm sieve,and gradation change rate after extraction,were examined.The effects of RAP characteristics on splitting tensile strength,water stability,the high-and low-temperature performance of emulsified asphalt CRM were studied.The results show that the optimum moisture content of CRM should be determined when the compaction work matches the specimen’s molding work.Among the analyzed methods of bulk specific gravity assessment,the dry-surface and CoreLok methods provide more robust and accurate results than the wax-sealing method,while the dry-surface method is the most cost-efficient.The modified theoretical maximum relative density test method is proposed,which can reduce the systematic error of the vacuum test method.The following RAP-CRM trends can be observed.The lower the content of old asphalt and the smaller the change rate of gradation,the smaller the voids and the better the water stability of CRM.The greater the penetration of old asphalt,the higher the fracture work and low-temperature splitting strength.The greater the penetration,the higher the passing rate of 4.75 mm sieve after extraction,and the worse the high-temperature performance of CRM.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
基金funded by the National Key Research and Development Program of China (2023YFE0124400)the Specific university discipline construction project (2023B10564001)+1 种基金grants administered by the Arkansas Biosciences Institute and the USDAa core grant (P20GM121293, proteogenomics core)。
文摘Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production.
基金The National Natural Science Foundation of China(Grant#52278161)the Science and Technology Project of Guangzhou(Grant#2024A04J9888)the Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.
基金the National Key Research Program of China under granted No.92164201National Natural Science Foundation of China for Distinguished Young Scholars No.62325403+2 种基金Natural Science Foundation of Jiangsu Province(BK20230498)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB427)the National Natural Science Foundation of China(62304147).
文摘Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy,high safety,and high environmental adaptability.However,the research and development of solid-state batteries are resource-intensive and time-consuming due to their complex chemical environment,rendering performance prediction arduous and delaying large-scale industrialization.Artificial intelligence serves as an accelerator for solid-state battery development by enabling efficient material screening and performance prediction.This review will systematically examine how the latest progress in using machine learning(ML)algorithms can be used to mine extensive material databases and accelerate the discovery of high-performance cathode,anode,and electrolyte materials suitable for solid-state batteries.Furthermore,the use of ML technology to accurately estimate and predict key performance indicators in the solid-state battery management system will be discussed,among which are state of charge,state of health,remaining useful life,and battery capacity.Finally,we will summarize the main challenges encountered in the current research,such as data quality issues and poor code portability,and propose possible solutions and development paths.These will provide clear guidance for future research and technological reiteration.
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.52371128,52304378,52101031 and 92163107).
文摘Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant No.30923011018)。
文摘The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.