期刊文献+
共找到324,891篇文章
< 1 2 250 >
每页显示 20 50 100
FPGA-based High-precision Measurement Algorithm for the Ultrasonic Echo Time of Flight 被引量:4
1
作者 王伯雄 张金 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期103-107,共5页
Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the req... Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps. 展开更多
关键词 ultrasonic flow measurement time of flight phase delay interpolation
在线阅读 下载PDF
High-precision measurement of low reflectivity specular object based on phase measuring deflectometry 被引量:1
2
作者 Yuxiang Wu Huimin Yue Yong Liu 《光电工程》 CAS CSCD 北大核心 2017年第8期772-780,共9页
Phase measuring deflectometry(PMD)is a robust,noncoherent technique for the characterization of specular surface.For measuring high specular reflectivity surface,PMD can deliver micron radian range local gradient.Howe... Phase measuring deflectometry(PMD)is a robust,noncoherent technique for the characterization of specular surface.For measuring high specular reflectivity surface,PMD can deliver micron radian range local gradient.However,when the measured surface has low specular reflectivity,the accuracy of the measured gradient is low since the captured fringe pattern shows low signal to noise ratio.The phase error characteristics in PMD system when testing low reflectivity surfaces are analyzed.The analysis illustrates that the random phase error increases rapidly while the nonlinear error drops slowly with the decreasing of the tested surface reflectivity.In order to attain high precision measurement of low reflectivity specular surface,a robust error reduction method based on wavelet de-noising is proposed to reduce the phase error.This error reduction method is compared with several other normally used methods in both simulation and experiment work.The method based on the wavelet de-noising shows better performance when measuring the low reflectivity specular surface. 展开更多
关键词 光电工程 电学技术 测试 调整
在线阅读 下载PDF
High-precision large-aperture single-frame interferometric surface profile measurement method based on deep learning
3
作者 Liang Tang Mingzhi Han +3 位作者 Shuai Yang Ye Sun Lirong Qiu Weiqian Zhao 《International Journal of Extreme Manufacturing》 2025年第5期481-492,共12页
Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predomina... Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems. 展开更多
关键词 large-aperture optical components single-frame interferometric surface profile deep learning dynamic high-precision measurement
在线阅读 下载PDF
High-precision measurement of microwave electric field by cavity-enhanced critical behavior in a many-body Rydberg atomic system
4
作者 Qinxia Wang Yukang Liang +5 位作者 Zhihui Wang Shijun Guan Pengfei Yang Pengfei Zhang Gang Li Tiancai Zhang 《Science China(Physics,Mechanics & Astronomy)》 2025年第6期148-153,共6页
It has been demonstrated that the Rydberg criticality in a many-body atomic system can enhance the measurement sensitivity of the microwave electric field by increasing the Fisher information.In our previous work,we p... It has been demonstrated that the Rydberg criticality in a many-body atomic system can enhance the measurement sensitivity of the microwave electric field by increasing the Fisher information.In our previous work,we proposed and experimentally verified that the Fisher information near the critical point can be increased by more than two orders of magnitude with the Rydberg atoms coupled with an optical cavity compared with that in free space.Here we demonstrate the precision measurement of the microwave electric field by cavity-enhanced critical behavior.We show that the equivalent measurement sensitivity of the microwave electric field can be enhanced by an order of magnitude compared with that in free space.The obtained sensitivity can be enhanced to 2.6 nV cm^(−1) Hz^(−1/2). 展开更多
关键词 Rydberg atoms many-body system optical resonant cavity high-precision measurement
原文传递
High-precision automatic measurement of two-dimensional geometric features based on machine vision 被引量:6
5
作者 何博侠 何勇 +1 位作者 薛蓉 杨洪锋 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期428-433,共6页
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a... To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts. 展开更多
关键词 machine vision two-dimensional geometric features high-precision measurement automatic measurement
在线阅读 下载PDF
High-Precision Wideband Phase-Derived Velocity Measurement for Micro-Motion Extraction
6
作者 Yuan Jiang Huayu Fan +1 位作者 Quanhua Liu Xinliang Chen 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期106-114,共9页
A phase-derived velocity measurement method is proposed in a wideband coherent system,based on a precise echo model considering the inner pulse Doppler effect caused by fast moving targets.The Cramer-Rao low band of v... A phase-derived velocity measurement method is proposed in a wideband coherent system,based on a precise echo model considering the inner pulse Doppler effect caused by fast moving targets.The Cramer-Rao low band of velocity measurement precision is deduced,demonstrating the high precision of the proposed method.Simulations and out-field experiments further validate the effectiveness of the proposed method in high-precision measurement and micro-motion extraction for targets with weak reflection intensity.Compared with the long-time integration approaches for velocity measurement,the phase-derived method is easy to implement and meets the requirement for high data rate,which makes it suitable for micro-motion feature extraction in wideband systems. 展开更多
关键词 phase-derived velocity measurement micro-motion extraction wideband coherent sys-tem high-precision measurement
在线阅读 下载PDF
Coordinate unification method of high-precision composite measurement in two dimensions 被引量:2
7
作者 文信 付鲁华 +2 位作者 赵炎 张恒 王仲 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期205-213,共9页
Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from ... Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from one or more sensors. Because of the problem that standard ball is deficient as a standard artifact in the coordinate unification of high-precision composite measurement in two dimensions (2D) , a new method is proposed in this paper which uses angle gauge blocks as standard artifacts to achieve coordinate unification between the image sensor and the tactile probe. By comparing the standard ball with the angle gauge block as a standard artifact, theoretical analysis and experimental results are given to prove that it is more precise and more convenient to use angle gauge blocks as standard artifacts to achieve coordinate unification of high-precision composite measurement in two dimensions. 展开更多
关键词 high-precision composite measurement image sensor tactile probe coordinate unification angle gauge block
在线阅读 下载PDF
Application of Fuzzy Inference System in Gas Turbine Engine Fault Diagnosis Against Measurement Uncertainties 被引量:1
8
作者 Shuai Ma Yafeng Wu +1 位作者 Zheng Hua Linfeng Gou 《Chinese Journal of Mechanical Engineering》 2025年第1期62-83,共22页
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf... Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties. 展开更多
关键词 Performance-based fault diagnosis Gas turbine engine Fuzzy inference system measurement uncertainty Regression and classification
在线阅读 下载PDF
Correlation between the rock mass properties and maximum horizontal stress:A case study of overcoring stress measurements
9
作者 Peng Li Meifeng Cai +2 位作者 Shengjun Miao Yuan Li Yu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期39-48,共10页
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre... Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data. 展开更多
关键词 overcoring stress measurements elastic modulus Poisson's ratio rock quality designation maximum horizontal stress fuzzy identification
在线阅读 下载PDF
A centroid measurement method based on 3D scanning 被引量:1
10
作者 HE Xin LI Zhen 《Journal of Measurement Science and Instrumentation》 2025年第2期186-194,共9页
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo... The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems. 展开更多
关键词 centroid measurement mass characteristic parameter 3D scanning 3D point cloud data no specialized positioning fixtures multi-point weighing method
在线阅读 下载PDF
Accurate Measurements and Error Analysis of Bi_(2)Te_(3)-Based Low-Temperature Thermoelectrics
11
作者 Jie Zhang Yixuan Ge +9 位作者 Minhua Huang Xiaohan Qin Chao Xin Linhan Wang Wenfeng Du Tianbo Lu Huaizhou Zhao Wenjie Liang Yongjun Cao Guodong Li 《Chinese Physics Letters》 2025年第5期100-116,共17页
The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a... The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics. 展开更多
关键词 measurement system thermoelectric parameters low temperature measurements thermoelectric properties thermoelectric cooling devices error analyses standard measurement protocols characterization thermoelectric properties
原文传递
An efficient and high-precision algorithm for solving multiple deformation modes of elastic beams
12
作者 Yunzhou WANG Binbin ZHENG +2 位作者 Lingling HU Nan SUN Minghui FU 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1753-1770,共18页
The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with kn... The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes. 展开更多
关键词 elastic beam elliptic integral deformation mode transition equilibrium path high-precision algorithm
在线阅读 下载PDF
Measurement of emissivity with a new grey body and novel IR thermal sensor dubbed TMOS
13
作者 Moshe Avraham Shlomi Bouscher +2 位作者 Jonathan Nemirovsky Yael Nemirovsky 《红外与毫米波学报》 北大核心 2025年第1期17-24,共8页
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.... The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported. 展开更多
关键词 BLACKBODY grey body graybody cavity blackbody extended area blackbody EMISSIVITY IR thermometry remote temperature measurement
在线阅读 下载PDF
Measurement and Characterization of Micro Corner-Cube Reflectors Array Using Coherent Denoising Interference and Physical Model-Based Neural Network
14
作者 Xinlan Tang Lingbao Kong +4 位作者 Zhenzhen Ding Yuhan Wang Bo Wang Huixin Song Yanwen Shen 《Chinese Journal of Mechanical Engineering》 2025年第3期61-76,共16页
In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array... In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices. 展开更多
关键词 Microstructural arrays measurement Optical measurement Coherent denoising Neural network Multi-reflection
暂未订购
Recommended electrochemical measurement protocol for oxygen evolution reaction
15
作者 Chao Wu Ying Tang +5 位作者 Anqi Zou Junhua Li Haoyan Meng Feng Gao Jiagang Wu Xiaopeng Wang 《DeCarbon》 2025年第2期24-49,共26页
Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hinde... Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications. 展开更多
关键词 Electrochemical measurement Oxygen evolution reaction Intrinsic activities STABILITIES Protocols for OER measurement
在线阅读 下载PDF
AARPose:Real-time and accurate drogue pose measurement based on monocular vision for autonomous aerial refueling
16
作者 Shuyuan WEN Yang GAO +3 位作者 Bingrui HU Zhongyu LUO Zhenzhong WEI Guangjun ZHANG 《Chinese Journal of Aeronautics》 2025年第6期552-572,共21页
Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness... Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices. 展开更多
关键词 Autonomous aerial refueling Vision measurement Deep learning REAL-TIME LIGHTWEIGHT ACCURATE Monocular vision Drogue pose measurement
原文传递
Consistent fusion for distributed multi-rate multi-sensor linear systems with unknown correlated measurement noises
17
作者 Peng WANG Hongbing JI +1 位作者 Yongquan ZHANG Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第7期389-407,共19页
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult... This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy. 展开更多
关键词 Distributed multi-rate multisensor system Sensor data fusion Correlated measurement noise Equivalent measurement Consistent method
原文传递
Research on Integrated Circuit Talent Stability Construction Based on Turnover Attribution in High-Precision, Specialized, and Innovative Enterprises
18
作者 Mingjie Cheng Ziying Chen +1 位作者 Xiayuan Huang Zhixin Jian 《Proceedings of Business and Economic Studies》 2025年第5期87-94,共8页
With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,spec... With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1]. 展开更多
关键词 high-precision specialized and innovative enterprises IC engineers Learning map Talent review Talent map
在线阅读 下载PDF
Bayesian phase difference estimation based on single-photon projective measurement
19
作者 Xu-Hao Yu Ying Wei +7 位作者 Ran Yang Wen-Hui Song Yingning Miao Wei Zhou Xinhui Li Xiaoqin Gao Yan-Xiao Gong Shi-Ning Zhu 《Chinese Physics B》 2025年第7期89-93,共5页
The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale ... The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints. 展开更多
关键词 Bayesian phase difference estimation single-photon projection measurement Heisenberg limit quantum information quantum state engineering and measurements
原文传递
Adhesion of 2D Materials: Measurement and Modulation
20
作者 Na Li Hongrong Wu +1 位作者 Changwei Sun Junhua Zhao 《Acta Mechanica Solida Sinica》 2025年第2期252-274,共23页
Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and ... Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials. 展开更多
关键词 2D materials ADHESION measurement MODULATION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部