期刊文献+
共找到3,565篇文章
< 1 2 179 >
每页显示 20 50 100
Numerical Studies on the Generation and Propagation of Tsunami Waves Based on the High-Order Spectral Method
1
作者 HAO Jian LI Jin-xuan +1 位作者 LIU Shu-xue WANG Lei 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期268-278,共11页
An effective numerical model for wave propagation over three-dimensional(3D)bathymetry was developed based on the High-Order Spectral(HOS)method and combined with a moving bottom boundary.Based on this model,tsunami w... An effective numerical model for wave propagation over three-dimensional(3D)bathymetry was developed based on the High-Order Spectral(HOS)method and combined with a moving bottom boundary.Based on this model,tsunami waves caused by various mechanisms were simulated and analyzed.Two-dimensional bed upthrust and the effect of the uplift velocity of the bathymetry on the wave profiles of tsunami waves were studied.Next,tsunami waves caused by 3D submarine slides were generated and the effects of the slide velocity,slide dimension and water depth on the tsunami waves were analyzed.Based on wavelet analysis,the properties of the tsunami wave propagation were investigated.The results show that the bottom movement can significantly affect the generation and propagation of tsunami waves and the studies could help understand the mechanisms of tsunamis caused by a moving bottom boundary. 展开更多
关键词 tsunami waves high-order spectral(HOS)method moving bottom boundary wavelet analysis
在线阅读 下载PDF
3-D simulations of freak waves based on high-order spectral method
2
作者 赵西增 孙昭晨 梁书秀 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期286-291,共6页
Three-dimensional ( 3-D) directional wave focusing is one of the mechanisms that contribute to the generation of freak waves. To simulate and analyze this phenomenon,a 3-D wave focusing model is proposed based on the ... Three-dimensional ( 3-D) directional wave focusing is one of the mechanisms that contribute to the generation of freak waves. To simulate and analyze this phenomenon,a 3-D wave focusing model is proposed based on the enhanced high-order spectral method,which solves the fully nonlinear potential flow equations with a free surface within periodic unbounded 3-D domains. The numerical model is validated against a fifth-order Stokes solution for regular waves. Laboratory-scale freak waves are observed with wave components having equal amplitudes. Investigations of the appearance and propagation of freak-wave events in a 3-D open wavefield defined by a directional wave spectrum are then realized. 展开更多
关键词 freak wave high order spectral method directional spectrum wave focusing wave model
在线阅读 下载PDF
Frequency shifts of high-order harmonics from ZnO crystals by chirped laser pulses
3
作者 Yu Zhao Xiao-Jin Liu +3 位作者 Shuang Wang Xiao-Xin Huo Yun-He Xing Jun Zhang 《Chinese Physics B》 2025年第3期340-346,共7页
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a... We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time. 展开更多
关键词 high-order harmonic generation ZnO crystal chirped laser pulse spectral shift
原文传递
Analysis of a Laplace Spectral Method for Time-Fractional Advection-Diffusion Equations Incorporating the Atangana-Baleanu Derivative
4
作者 Kamran Farman Ali Shah +3 位作者 Kallekh Afef J.F.Gómez-Aguilar Salma Aljawi Ioan-Lucian Popa 《Computer Modeling in Engineering & Sciences》 2025年第6期3433-3462,共30页
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva... In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate. 展开更多
关键词 Laplace transform spectral method existence theory fractional derivative with non-singular kernel contour integration methods
在线阅读 下载PDF
Iterated rational quadratic kernel-High-order unscented Kalman filtering algorithm for spacecraft tracking
5
作者 Xinru Liang Changsheng Gao +1 位作者 Wuxing Jing Ruoming An 《Defence Technology(防务技术)》 2025年第3期238-250,共13页
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ... The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments. 展开更多
关键词 Kernel method Rational quadratic(RQ)kernel high-order sigma points SPACECRAFT Reentry vehicles
在线阅读 下载PDF
A step-by-step Chebyshev space-time spectral method for force vibration of functionally graded structures
6
作者 Haizhou Liu Yixin Huang Yang Zhao 《Acta Mechanica Sinica》 2025年第4期142-155,共14页
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc... This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases. 展开更多
关键词 Functionally graded materials Space-time spectral method Step-by-step approach Forced vibration
原文传递
Numerical investigation on a comprehensive high-order finite particle scheme
7
作者 Yudong LI Yan LI +2 位作者 Chunfa WANG PJOLI Zhiqiang FENG 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1187-1214,共28页
In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solut... In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program. 展开更多
关键词 numerical method high-order finite particle method(HFPM) kernel gradient correction(KGC) decoupled finite particle method(DFPM) weakly compressible smoothed particle hydrodynamics(SPH)
在线阅读 下载PDF
Denoising graph neural network based on zero-shot learning for Gibbs phenomenon in high-order DG applications
8
作者 Wei AN Jiawen LIU +3 位作者 Wenxuan OUYANG Haoyu RU Xuejun LIU Hongqiang LYU 《Chinese Journal of Aeronautics》 2025年第3期234-248,共15页
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi... With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost. 展开更多
关键词 Computational fluid dynamics high-order discon tinuous Galerkin method Gibbs phenomenon Graph neural networks Zero-shot learning
原文传递
A robust implicit high-order discontinuous Galerkin method for solving compressible Navier-Stokes equations on arbitrary grids
9
作者 Jia Yan Xiaoquan Yang Peifen Weng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期96-119,共24页
The primary impediments impeding the implementation of high-order methods in simulating viscous flow over complex configurations are robustness and convergence.These challenges impose significant constraints on comput... The primary impediments impeding the implementation of high-order methods in simulating viscous flow over complex configurations are robustness and convergence.These challenges impose significant constraints on computational efficiency,particularly in the domain of engineering applications.To address these concerns,this paper proposes a robust implicit high-order discontinuous Galerkin(DG)method for solving compressible Navier-Stokes(NS)equations on arbitrary grids.The method achieves a favorable equilibrium between computational stability and efficiency.To solve the linear system,an exact Jacobian matrix solving strategy is employed for preconditioning and matrix-vector generation in the generalized minimal residual(GMRES)method.This approach mitigates numerical errors in Jacobian solution during implicit calculations and facilitates the implementation of an adaptive Courant-Friedrichs-Lewy(CFL)number increasing strategy,with the aim of improving convergence and robustness.To further enhance the applicability of the proposed method for intricate grid distortions,all simulations are performed in the reference domain.This practice significantly improves the reversibility of the mass matrix in implicit calculations.A comprehensive analysis of various parameters influencing computational stability and efficiency is conducted,including CFL number,Krylov subspace size,and GMRES convergence criteria.The computed results from a series of numerical test cases demonstrate the promising results achieved by combining the DG method,GMRES solver,exact Jacobian matrix,adaptive CFL number,and reference domain calculations in terms of robustness,convergence,and accuracy.These analysis results can serve as a reference for implicit computation in high-order calculations. 展开更多
关键词 Discontinuous Galerkin method Exact Jacobian matrix GMRES solver Adaptive CFL number Reference domain high-order
原文传递
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
10
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous Galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method spectral deferred correction method
在线阅读 下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
11
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
在线阅读 下载PDF
Calibration of a γ-Re_θ transition model and its validation in low-speed flows with high-order numerical method 被引量:10
12
作者 Wang Yuntao Zhang Yulun +1 位作者 Li Song Meng Dehong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期704-711,共8页
Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonline... Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonlinear scheme (WCNS), and the purpose of the present work is to improve the numerical accuracy for aerodynamic characteristics simulation of low-speed flow with transition model on the basis of high-order numerical method study. Firstly, the empirical correlation functions involved in the Y-Reo transition model are modified and calibrated with experimental data of turbulent flat plates. Then, the grid convergence is studied on NLR-7301 two-element airfoil with the modified empirical correlation. At last, the modified empirical correlation is validated with NLR-7301 two-element airfoil and high-lift trapezoidal wing from transition location, velocity pro- file in boundary layer, surface pressure coefficient and aerodynamic characteristics. The numerical results illustrate that the numerical accuracy of transition length and skin friction behind transition location are improved with modified empirical correlation function, and obviously increases the numerical accuracy of aerodynamic characteristics prediction for typical transport configurations in low-speed range. 展开更多
关键词 Aerodynamic characteristicsFinite difference scheme high-order method Laminar to turbulenttransition RANS
原文传递
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
13
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 Two-phase incompressible flows Fully-decoupled high-order accurate Linear implicit spectral deferred correction method Local discontinuous Galerkin method
在线阅读 下载PDF
Distributed wide field electromagnetic method based on high-order 2^(n) sequence pseudo random signal 被引量:5
14
作者 Yang YANG Ji-shan HE +1 位作者 Fan LING Yu-zhen ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1609-1622,共14页
To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth... To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals. 展开更多
关键词 distributed wide field electromagnetic method(WFEM) high-order pseudo-random signal MULTIFREQUENCY massive data
在线阅读 下载PDF
The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation 被引量:4
15
作者 左进明 张耀明 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期69-75,共7页
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)... This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations. 展开更多
关键词 coupled Burgers equation high-order Boussinesq-Burgers equation Hirota's bilinear method
原文传递
Prediction of Hydrodynamic Forces on a Moored Ship Induced by a Passing Ship in Shallow Water Using a High-Order Panel Method 被引量:4
16
作者 徐华福 邹早建 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第2期129-135,共7页
A three-dimensional high-order panel method based on non-uniform rational B-spline(NURBS) is developed for predicting the hydrodynamic interaction forces on a moored ship induced by a passing ship in shallow water. An... A three-dimensional high-order panel method based on non-uniform rational B-spline(NURBS) is developed for predicting the hydrodynamic interaction forces on a moored ship induced by a passing ship in shallow water. An NURBS surface is used to precisely represent the hull geometry. Velocity potential on the hull surface is described by B-spline after the source density distribution on the boundary surface is determined. A collocation approach is applied to the boundary integral equation discretization. Under the assumption of low passing speed, the effect of free surface elevation is neglected in the numerical calculation, and infinite image method is used to deal with the finite water depth effect. The time stepping method is used to solve the velocity potential at each time step. Detailed convergence study with respect to time step, panel size and Green function is undertaken. The present results of hydrodynamic forces are compared with those obtained by slender-body theory to show the validity of the proposed numerical method. Calculations are conducted for different water depths and lateral distances between ships, and the detail results are presented to demonstrate the effects of these factors. 展开更多
关键词 moored ship passing ship hydrodynamic interaction non-uniform rational B-spline(NURBS) high-order panel method
原文传递
A high-order accurate wavelet method for solving Schrdinger equations with general nonlinearity 被引量:3
17
作者 Jiaqun WANG Xiaojing LIU Youhe ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期275-290,共16页
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G... A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods. 展开更多
关键词 WAVELET Galerkin method generalized nonlinear SchrSdinger (NLS) equation high-order convergence
在线阅读 下载PDF
High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows 被引量:2
18
作者 Yu Lv Matthias Ihme 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期486-499,共14页
This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been... This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chemically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic properties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicomponent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows. 展开更多
关键词 Discontinuous Galerkin method high-order schemes Reacting flows Multicomponent flows
在线阅读 下载PDF
Efficient simulation of spatially correlated non-stationary ground motions by wavelet-packet algorithm and spectral representation method
19
作者 Ji Kun Cao Xuyang +1 位作者 Wang Suyang Wen Ruizhi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期799-814,共16页
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ... Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration. 展开更多
关键词 non-stationarity time-varying spectrum wavelet packet transform(WPT) spectral representation method(SRM) response spectrum spatially varying recordings
在线阅读 下载PDF
A deep learning method for solving high-order nonlinear soliton equations 被引量:1
20
作者 Shikun Cui Zhen Wang +2 位作者 Jiaqi Han Xinyu Cui Qicheng Meng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第7期57-69,共13页
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa... We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons. 展开更多
关键词 deep learning method physics-informed neural networks high-order nonlinear soliton equations interaction between solitons the numerical driven solution
原文传递
上一页 1 2 179 下一页 到第
使用帮助 返回顶部