In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
High-intensity interval training(HIIT),a highly efficient and distinctive exercise format,has sparked growing academic interest in sports performance training.This article synthesizes theoretical and applied evidence ...High-intensity interval training(HIIT),a highly efficient and distinctive exercise format,has sparked growing academic interest in sports performance training.This article synthesizes theoretical and applied evidence to analyze mechanisms of HIIT in neuromuscular activation,hormonal responses,muscle fiber adaptation,and metabolic pathway effects.It focuses on its effectiveness in enhancing explosive power,maximum strength,and strength endurance,while also examining the integration of HIIT with traditional resistance training,periodized programming,and personalized prescription.Scientific implementation of HIIT can effectively diversify or even replace conventional strength training,not only offering positive directional changes for strength development but also introducing innovative approaches to sports performance training practices.展开更多
[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of ...[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of Science,SPORTSDiscus,PsycINFO,SCOPUS,CINAHL)up to May 2025.Seventeen randomized controlled trials(RCTs;total n=1142)met inclusion criteria:adults with stroke,device-based HIIT(≥70%HRR/VO 2peak),and outcomes assessing VO 2peak,6-min walk distance(6MWD),or Berg Balance Scale(BBS).Methodological quality was evaluated using the PEDro scale.Pooled effect sizes(Hedges'g)were calculated via random-effects models,with heterogeneity quantified by I^(2).[Results]HIIT significantly improved peak oxygen uptake(VO 2peak)versus controls(g=0.59,95%CI:0.44-0.75,p<0.001;I^(2)=16.29%).Low heterogeneity and symmetrical funnel plots supported robustness.HIIT also enhanced walking endurance(6MWD:g=0.32,95%CI:0.16-0.48,p<0.01;I^(2)=30%).In contrast,no significant benefit was observed for balance function(BBS:g=0.07,95%CI:-0.13-0.26,p=0.50;I^(2)=0%).[Conclusions]HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke.Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement.Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence.展开更多
Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts...Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts resulting from this approach has become increasingly serious.Therefore,to implement coal mine safety and efficient extraction,the impact of deformation pressure caused by different mining speeds should be considered,and a reasonable mining speed of the working face should be determined.The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model.Results show that with the increasing mining speed,the compression amount of gangue in the goaf decreases,and the rotation and subsidence amount of rock block B above goaf decreases,forcing the rotation and subsidence amount of rock block A above roadway to increase.Consequently,the contact mode between rock block A and rock block B changes from line contact to point contact,and the horizontal thrust and shear force between blocks increase.The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer,thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation.In addition,due to the insufficient compression of gangue in the goaf,the bending and subsidence space of the far-field key layer are limited,the length of the suspended roof increases,and the influence range of mining stress and the energy accumulation range expand.Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy,and high-energy events generally appear 1-2 d after the change in mining speed.On this basis,the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable.展开更多
In the context of increasing demand for coal mine resources in China’s current socio-economic development,traditional mining methods have been difficult to effectively meet the requirements of safety production and e...In the context of increasing demand for coal mine resources in China’s current socio-economic development,traditional mining methods have been difficult to effectively meet the requirements of safety production and environmental protection.As a result,coal mine filling mining technology has emerged,which can effectively achieve the goal of controlling surface subsidence in practical applications,while also significantly improving the recovery rate of coal resources.Based on this,this study will first elaborate on the characteristics of filling mining technology,and then analyze the key points of the application of supporting technology for mechanical and electrical equipment in the corresponding working face based on actual cases,in order to provide support for improving the efficiency of coal mining.展开更多
Coal mine underground reservoir(CMUR) technology mitigates water scarcity in China's coal-rich western regions but lacks tailored solutions for steeply inclined coal seams.This study develops a novel framework of ...Coal mine underground reservoir(CMUR) technology mitigates water scarcity in China's coal-rich western regions but lacks tailored solutions for steeply inclined coal seams.This study develops a novel framework of steeply inclined coal mine underground reservoirs(SICMUR),which is a paradigm shift from conventional CMUR that the coal seam itself serves as the reservoir floor,challenging conventional designs due to depth-dependent permeability and mechanical constraints.Triaxial mechanical-seepage tests on Xinjiang Wudong coal samples(100,200,300 m depths) revealed a 3.5 MPa triaxial strength increase per 100 m depth and a 58-fold post-peak permeability surge at 300 versus 100 m.Similar model simulations revealed mining-induced stress redistribution and significant deformation effects,particularly subsidence and water-conducting fractures during lower coal seam mining.Results indicate a minimum 40 m safety distance between reservoirs and lower coal seams.Critical construction parameters were investigated for Wudong mine SICMUR as collapse zone heights(9.9–12.31 m) and waterconducting fracture zone heights(31.96–37.40 m).This work systematically bridges SICMUR concepts to field implementation,offering a framework for water preservation in steeply inclined mining while addressing safety concerns,providing a new approach for water reservation in steeply inclined coal mining.展开更多
Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as r...Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as radical prostatectomy (RP) and radiotherapy (RT), and nonradical focal therapy (FT). FT is a focused approach mainly used for treating small lesions limited to a specific zone of the prostate. Its objective is to achieve cancer control when minimizing damage to benign tissue. High-intensity focused ultrasound (HIFU) is one of the most used modalities in FT for the management of PCa. The progress in HIFU technology showcases continuous advancements, offering clinicians a variety of strategies to cater to diverse patient requirements. The advancements include the development of transrectal and transurethral HIFU machines that offer enhanced treatment distances, magnetic resonance imaging (MRI) fusion capabilities, real-time monitoring, and precise ablation. These improvements contribute to increased treatment effectiveness and better outcomes for patients. This narrative review aims to summarize the use of HIFU technology and its evolution, offering diverse options to clinicians, and explores the safety, effectiveness, and quality of different HIFU strategies, such as whole-gland ablation, hemigland ablation, and focal ablation. We conclude that nonwhole-gland HIFU offers similar cancer control with better short-term functional outcomes and fewer complications compared to whole-gland ablation. Combining HIFU with transurethral resection of the prostate (TURP) improves urinary function and reduces catheterization time. Focal ablation and hemigland ablation show promise in achieving cancer control when preserving continence and potency.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify...This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and...The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.展开更多
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel...High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.展开更多
Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We ...Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We aimed to pool all available data in a systematic review without meta-analysis and investigate the efficacy and safety tendencies of HIFU among different types of EP.We applied our comprehensive terms in Google Scholar,PubMed,Scopus,Ovid,and PubMed Central databases from their inception until September 23.Retrieved references were gathered using EndNote in which we omitted the duplicates and exported the record for screening.Data regarding character-istics,safety and efficacy outcomes,and baseline information of the enrolled population were extracted.The eligible case reports were assessed using a tool by Murad and colleagues,while the quality of the included cohorts was appraised using the NIH tool.We retrieved 6637 studies,which were scruti-nized by titles and abstracts.We scrutinized the full texts of 36 studies and ultimately included a total of 17 studies.All studies were conducted in China,and on different types of ectopic pregnancy including tubal,cervical,intra-mural,caesarian scar,and corneal ectopic pregnancy.The mean age of enrolled patients was 33.03 years,and we pooled a total sample of 853 patients.The follow-up period varied widely among the included studies,ranging from 1.3 months to up to 69 months.Normal menstruation recurred after a mean of 35 days,as reported by nine studies.Most of the included studies reported normalβ-HCG after around 30-40 days.Twelve studies with 757 patients reported a cumulative incidence of 179 cases of abdominal pain after HIFU.Neither of the enrolled patients reportedly complained of skin burn after HIFU.We suggested managing EP patients with HIFU,especially when seeking further conceiving.High-quality randomized controlled trials are required to draw a stronger level of evidence.展开更多
Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the...Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.展开更多
1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrest...1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.展开更多
Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across...Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.展开更多
Aseptic osteonecrosis of the femoral head is defined as the death of bone cells in the femoral epiphysis due to an interruption of blood supply. Most cases are linked to trauma, but non-traumatic cases also occur and ...Aseptic osteonecrosis of the femoral head is defined as the death of bone cells in the femoral epiphysis due to an interruption of blood supply. Most cases are linked to trauma, but non-traumatic cases also occur and can be associated with several known risk factors. This study aims to describe these risk factors identified in the former Katanga province, a region with significant mining activity. Method and Patients: This is a descriptive cross-sectional study conducted over a seven-year period (2017-2024), including all cases of aseptic osteonecrosis of the femoral head diagnosed in the orthopedic department of Medpark Clinic in Lubumbashi. The investigation of risk factors was based on the analysis of sociodemographic, clinical, radiological, and biological data. Results: Our study included a total of 110 patients with a mean age of 47.5 years. Among them, there were 46 women (41.82%) and 64 men (58.18%). Twenty-five patients (27.5%) reported a family history of osteonecrosis, and 24% were diagnosed with sickle cell disease. Chronic alcoholism was noted in 14 patients (12.73%), while diabetes was present in 8 (7.2%). Four patients (3.64%) were obese, and three were HIV-positive (2.72%). The use of nonsteroidal anti-inflammatory drugs (NSAIDs) was common, and prolonged corticosteroid use was documented in 5 patients (4.5%). Abnormally high cholesterol levels were found in 26 patients (23.6%). One patient had gout, and two suffered from acute rheumatic fever (1.8%). Regarding inflammatory markers, C-reactive protein levels and erythrocyte sedimentation rates were within normal limits for almost all patients. Electrolyte levels and phosphocalcic profiles showed no abnormalities. Furthermore, 33 patients (30%) did not exhibit any of the previously mentioned risk factors. Most of these patients lived in the regions of Kolwezi, Likasi, and Lubumbashi. Among this group, 25 patients reported performing physically demanding labor, particularly in mining operations. Conclusion: Our study highlighted well-known risk factors for osteonecrosis of the femoral head (ONFH). However, it also identified a significant number of cases without any identifiable risk factors, classified as idiopathic. Among these cases, some patients engaged in intense physical labor, often linked to mining exposure.展开更多
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
文摘High-intensity interval training(HIIT),a highly efficient and distinctive exercise format,has sparked growing academic interest in sports performance training.This article synthesizes theoretical and applied evidence to analyze mechanisms of HIIT in neuromuscular activation,hormonal responses,muscle fiber adaptation,and metabolic pathway effects.It focuses on its effectiveness in enhancing explosive power,maximum strength,and strength endurance,while also examining the integration of HIIT with traditional resistance training,periodized programming,and personalized prescription.Scientific implementation of HIIT can effectively diversify or even replace conventional strength training,not only offering positive directional changes for strength development but also introducing innovative approaches to sports performance training practices.
文摘[Objectives]To synthesize evidence on HIIT versus moderate-intensity continuous training(MICT)or routine rehabilitation in stroke survivors.[Methods]We systematically searched 8 databases(PubMed,EMBASE,CENTRAL,Web of Science,SPORTSDiscus,PsycINFO,SCOPUS,CINAHL)up to May 2025.Seventeen randomized controlled trials(RCTs;total n=1142)met inclusion criteria:adults with stroke,device-based HIIT(≥70%HRR/VO 2peak),and outcomes assessing VO 2peak,6-min walk distance(6MWD),or Berg Balance Scale(BBS).Methodological quality was evaluated using the PEDro scale.Pooled effect sizes(Hedges'g)were calculated via random-effects models,with heterogeneity quantified by I^(2).[Results]HIIT significantly improved peak oxygen uptake(VO 2peak)versus controls(g=0.59,95%CI:0.44-0.75,p<0.001;I^(2)=16.29%).Low heterogeneity and symmetrical funnel plots supported robustness.HIIT also enhanced walking endurance(6MWD:g=0.32,95%CI:0.16-0.48,p<0.01;I^(2)=30%).In contrast,no significant benefit was observed for balance function(BBS:g=0.07,95%CI:-0.13-0.26,p=0.50;I^(2)=0%).[Conclusions]HIIT is a safe and highly effective intervention for enhancing aerobic capacity and walking function post-stroke.Its benefits are maximized at higher intensities and longer durations but do not extend to balance improvement.Integrating HIIT into stroke rehabilitation protocols is strongly recommended to promote functional independence.
基金supported by Technology Innovation Fund of China Coal Research Institute(2022CX-I-04)Science and Technology Innovation Venture Capital Project of China Coal Technology Engineering Group(2020-2-TD-CXY005)。
文摘Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts resulting from this approach has become increasingly serious.Therefore,to implement coal mine safety and efficient extraction,the impact of deformation pressure caused by different mining speeds should be considered,and a reasonable mining speed of the working face should be determined.The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model.Results show that with the increasing mining speed,the compression amount of gangue in the goaf decreases,and the rotation and subsidence amount of rock block B above goaf decreases,forcing the rotation and subsidence amount of rock block A above roadway to increase.Consequently,the contact mode between rock block A and rock block B changes from line contact to point contact,and the horizontal thrust and shear force between blocks increase.The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer,thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation.In addition,due to the insufficient compression of gangue in the goaf,the bending and subsidence space of the far-field key layer are limited,the length of the suspended roof increases,and the influence range of mining stress and the energy accumulation range expand.Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy,and high-energy events generally appear 1-2 d after the change in mining speed.On this basis,the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable.
文摘In the context of increasing demand for coal mine resources in China’s current socio-economic development,traditional mining methods have been difficult to effectively meet the requirements of safety production and environmental protection.As a result,coal mine filling mining technology has emerged,which can effectively achieve the goal of controlling surface subsidence in practical applications,while also significantly improving the recovery rate of coal resources.Based on this,this study will first elaborate on the characteristics of filling mining technology,and then analyze the key points of the application of supporting technology for mechanical and electrical equipment in the corresponding working face based on actual cases,in order to provide support for improving the efficiency of coal mining.
基金supported by Beijing Natural Science Foundation (No.8254049)the National Natural Science Foundation of China (No.52374139)the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project (No.2024ZD1004505)。
文摘Coal mine underground reservoir(CMUR) technology mitigates water scarcity in China's coal-rich western regions but lacks tailored solutions for steeply inclined coal seams.This study develops a novel framework of steeply inclined coal mine underground reservoirs(SICMUR),which is a paradigm shift from conventional CMUR that the coal seam itself serves as the reservoir floor,challenging conventional designs due to depth-dependent permeability and mechanical constraints.Triaxial mechanical-seepage tests on Xinjiang Wudong coal samples(100,200,300 m depths) revealed a 3.5 MPa triaxial strength increase per 100 m depth and a 58-fold post-peak permeability surge at 300 versus 100 m.Similar model simulations revealed mining-induced stress redistribution and significant deformation effects,particularly subsidence and water-conducting fractures during lower coal seam mining.Results indicate a minimum 40 m safety distance between reservoirs and lower coal seams.Critical construction parameters were investigated for Wudong mine SICMUR as collapse zone heights(9.9–12.31 m) and waterconducting fracture zone heights(31.96–37.40 m).This work systematically bridges SICMUR concepts to field implementation,offering a framework for water preservation in steeply inclined mining while addressing safety concerns,providing a new approach for water reservation in steeply inclined coal mining.
文摘Prostate cancer (PCa) is a significant health concern globally, necessitating effective treatment options. Typical treatment methods for early stage, particularly localized PCa, encompass radical procedures, such as radical prostatectomy (RP) and radiotherapy (RT), and nonradical focal therapy (FT). FT is a focused approach mainly used for treating small lesions limited to a specific zone of the prostate. Its objective is to achieve cancer control when minimizing damage to benign tissue. High-intensity focused ultrasound (HIFU) is one of the most used modalities in FT for the management of PCa. The progress in HIFU technology showcases continuous advancements, offering clinicians a variety of strategies to cater to diverse patient requirements. The advancements include the development of transrectal and transurethral HIFU machines that offer enhanced treatment distances, magnetic resonance imaging (MRI) fusion capabilities, real-time monitoring, and precise ablation. These improvements contribute to increased treatment effectiveness and better outcomes for patients. This narrative review aims to summarize the use of HIFU technology and its evolution, offering diverse options to clinicians, and explores the safety, effectiveness, and quality of different HIFU strategies, such as whole-gland ablation, hemigland ablation, and focal ablation. We conclude that nonwhole-gland HIFU offers similar cancer control with better short-term functional outcomes and fewer complications compared to whole-gland ablation. Combining HIFU with transurethral resection of the prostate (TURP) improves urinary function and reduces catheterization time. Focal ablation and hemigland ablation show promise in achieving cancer control when preserving continence and potency.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
文摘This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
基金supported by the department of Geoscience,University of Nevada,Las Vegas,NV 89154,USAfinanced by the French Government Laboratory of Excellence Initiative(No.ANR-10-LABX-0006)the Region Auvergne and the European Regional Development Fund。
文摘The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.
文摘High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.
文摘Ectopic pregnancy(EP)could be defined as any embryo that got implanted in any site rather than the endometrial cavity.Lately,different types of EP were reportedly managed by high-intensity focused ultrasound(HIFU).We aimed to pool all available data in a systematic review without meta-analysis and investigate the efficacy and safety tendencies of HIFU among different types of EP.We applied our comprehensive terms in Google Scholar,PubMed,Scopus,Ovid,and PubMed Central databases from their inception until September 23.Retrieved references were gathered using EndNote in which we omitted the duplicates and exported the record for screening.Data regarding character-istics,safety and efficacy outcomes,and baseline information of the enrolled population were extracted.The eligible case reports were assessed using a tool by Murad and colleagues,while the quality of the included cohorts was appraised using the NIH tool.We retrieved 6637 studies,which were scruti-nized by titles and abstracts.We scrutinized the full texts of 36 studies and ultimately included a total of 17 studies.All studies were conducted in China,and on different types of ectopic pregnancy including tubal,cervical,intra-mural,caesarian scar,and corneal ectopic pregnancy.The mean age of enrolled patients was 33.03 years,and we pooled a total sample of 853 patients.The follow-up period varied widely among the included studies,ranging from 1.3 months to up to 69 months.Normal menstruation recurred after a mean of 35 days,as reported by nine studies.Most of the included studies reported normalβ-HCG after around 30-40 days.Twelve studies with 757 patients reported a cumulative incidence of 179 cases of abdominal pain after HIFU.Neither of the enrolled patients reportedly complained of skin burn after HIFU.We suggested managing EP patients with HIFU,especially when seeking further conceiving.High-quality randomized controlled trials are required to draw a stronger level of evidence.
基金supported by the National Natural Science Foundation of China(Nos.51827901,42477191,and 52304033)the Fundamental Research Funds for the Central Universities(No.YJ202449)+1 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022009)the China Postdoctoral Science Foundation(No.2023M742446).
文摘Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.
基金supported by the National Natural Science Foun dation of China(52374170 and 51974313)the National Key Research and Development Plan Project(2022YFF1303300).
文摘1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.
文摘Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.
文摘Aseptic osteonecrosis of the femoral head is defined as the death of bone cells in the femoral epiphysis due to an interruption of blood supply. Most cases are linked to trauma, but non-traumatic cases also occur and can be associated with several known risk factors. This study aims to describe these risk factors identified in the former Katanga province, a region with significant mining activity. Method and Patients: This is a descriptive cross-sectional study conducted over a seven-year period (2017-2024), including all cases of aseptic osteonecrosis of the femoral head diagnosed in the orthopedic department of Medpark Clinic in Lubumbashi. The investigation of risk factors was based on the analysis of sociodemographic, clinical, radiological, and biological data. Results: Our study included a total of 110 patients with a mean age of 47.5 years. Among them, there were 46 women (41.82%) and 64 men (58.18%). Twenty-five patients (27.5%) reported a family history of osteonecrosis, and 24% were diagnosed with sickle cell disease. Chronic alcoholism was noted in 14 patients (12.73%), while diabetes was present in 8 (7.2%). Four patients (3.64%) were obese, and three were HIV-positive (2.72%). The use of nonsteroidal anti-inflammatory drugs (NSAIDs) was common, and prolonged corticosteroid use was documented in 5 patients (4.5%). Abnormally high cholesterol levels were found in 26 patients (23.6%). One patient had gout, and two suffered from acute rheumatic fever (1.8%). Regarding inflammatory markers, C-reactive protein levels and erythrocyte sedimentation rates were within normal limits for almost all patients. Electrolyte levels and phosphocalcic profiles showed no abnormalities. Furthermore, 33 patients (30%) did not exhibit any of the previously mentioned risk factors. Most of these patients lived in the regions of Kolwezi, Likasi, and Lubumbashi. Among this group, 25 patients reported performing physically demanding labor, particularly in mining operations. Conclusion: Our study highlighted well-known risk factors for osteonecrosis of the femoral head (ONFH). However, it also identified a significant number of cases without any identifiable risk factors, classified as idiopathic. Among these cases, some patients engaged in intense physical labor, often linked to mining exposure.