The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l...The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.展开更多
Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between Octob...Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.展开更多
Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the ra...Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames.展开更多
China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and dis...China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and discontinuous,and there is no definite geological law to follow,which seriously threatens the safety of coal mine production and personnel life.Conventional ground geophysical methods have low accuracy in detecting goaf areas affected by mechanical interference from open-pit mines,especially for waterless goaf areas,which cannot be detected by existing methods.This article proposes the use of high-frequency electromagnetic waves for goaf detection.The feasibility of using drilling radar to detect goaf was theoretically analyzed,and a goaf detection model was established.The response characteristics of different fillers in the goaf under different frequencies of high-frequency electromagnetic waves were simulated and analyzed.In a certain open-pit mine in Inner Mongolia,100MHz high-frequency electromagnetic waves were used to detect the goaf through directional drilling on the ground.After detection,excavation verification was carried out,and the location of one goaf detected was verified.The results of engineering practice show that the application of high-frequency electromagnetic waves in goaf detection expands the detection radius of boreholes,has the advantages of high efficiency and accuracy,and has important theoretical and practical significance.展开更多
Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderl...Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderly GP patients admitted between June 2021 and December 2022 were selected.Patients were randomly divided into two groups:the painless group(50 cases)underwent high-frequency electrosurgical knife surgery guided by PDE,while the conventional group(50 cases)underwent the same surgery guided by traditional digestive endoscopy(DE).The total treatment efficacy,perioperative indicators,gastrointestinal hormone levels,oxidative stress(OS)markers,and complication rates were compared between the two groups.Results:The total treatment efficacy in the painless group was higher than that in the conventional group,and perioperative indicators were superior in the painless group(P<0.05).One week after treatment,the gastrointestinal hormone levels and OS-related markers in the painless group were better than those in the conventional group(P<0.05).The complication rate in the painless group was lower than in the conventional group(P<0.05).Conclusion:High-frequency electrosurgical knife surgery guided by PDE improves the effectiveness of polyp removal in elderly GP patients and accelerates postoperative recovery.It also protects gastrointestinal function,reduces postoperative OS,and ensures higher surgical safety.展开更多
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me...Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.展开更多
BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use o...BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use of methylprednisolone sodium succinate(MPSS)via different administration routes,in combination with conventional medications,remains a topic of interest.AIM To compare the therapeutic efficacy of MPSS administered via different routes in combination with conventional drugs for the treatment of mid-to high-frequency SSNHL.METHODS The medical records of 109 patients with mid-to high-frequency SSNHL were analyzed.The patients were divided into three groups based on the route of administration:Group A[intratympanic(IT)injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection],Group B(intravenous injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection),and Group C(single IT injection of MPSS).The intervention effects were compared and analyzed.RESULTS The posttreatment auditory thresholds in Group A(21.23±3.34)were significantly lower than those in Groups B(28.52±3.36)and C(30.23±4.21;P<0.05).Group A also exhibited a significantly greater speech recognition rate(92.23±5.34)than Groups B and C.The disappearance time of tinnitus,time to hearing recovery,and disappearance time of vertigo in Group A were significantly shorter than those in Groups B and C(P<0.05).The total effective rate in Group A(97.56%)was significantly greater than that in Groups B and C(77.14%and 78.79%,χ^(2)=7.898,P=0.019).Moreover,the incidence of adverse reactions in Groups A and C was significantly lower than that in Group B(4.88%,3.03%vs 2.57%,χ^(2)=11.443,P=0.003),and the recurrence rate in Group A was significantly lower than that in Groups B and C(2.44%vs 20.00%vs 21.21%,χ^(2)=7.120,P=0.028).CONCLUSION IT injection of MPSS combined with conventional treatment demonstrates superior efficacy and safety compared to systemic administration via intravenous infusion and a single IT injection of MPSS.This approach effectively improves patients'hearing and reduces the risk of disease recurrence.展开更多
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is...High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.展开更多
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ...The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.展开更多
Enhancing saturation magnetic flux density(Bs)while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization,high-frequency,and energy-saving o...Enhancing saturation magnetic flux density(Bs)while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization,high-frequency,and energy-saving of modern power electronic devices.In this work,we first designed a high-Bs Fe_(77.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)alloy by appropriately reducing the non-magnetic elements in typical Finemet nanocrystalline alloys,and subsequently alloyed 2 at%Co,Al,and Mo,respectively.The effects of alloying elements on structure and static and high-frequency magnetic properties were studied.The results reveal that,alloying Al or Mo reduces the averageα-Fe grain size(Dα-Fe)in the nanocrystalline alloys,while Co exhibits a slight influence.The added Al or Mo results in decreases in both the Bs and coercivity(Hc)of the nanocrystalline alloys,whereas Co increases the Bs without changing Hc,and meanwhile,all alloying elements show minimal effects on effective permeability(μe).Furthermore,the addition of Co,Al,or Mo lowers the core loss(Pcv)at 0.2 T/100 kHz of the based nanocrystalline alloy with reductions of 10.9%,29.6%,and 26.8%,respectively.A Fe_(75.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)Al_(2)nanocrystalline alloy exhibits outstanding soft magnetic properties with Bs,Hc,μe at 10 kHz and 100 kHz,and Pcv at 0.2 T/100 kHz of 1.34 T,0.8 A/m,27,400,18,000,and 350 kW/m3,respectively.The reduction in Pcv is primarily attributed to the decreased eddy current losses,originating from the increased electrical resistivity by elements alloying.展开更多
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance...Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is ...BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.展开更多
As the crypto-asset ecosystem matures,the use of high-frequency data has become increasingly common in decentralized finance literature.Using bibliometric analysis,we characterize the existing cryptocurrency literatur...As the crypto-asset ecosystem matures,the use of high-frequency data has become increasingly common in decentralized finance literature.Using bibliometric analysis,we characterize the existing cryptocurrency literature that employs high-frequency data.We highlighted the most influential authors,articles,and journals based on 189 articles from the Scopus database from 2015 to 2022.This approach enables us to identify emerging trends and research hotspots with the aid of co-citation and cartographic analyses.It shows knowledge expansion through authors’collaboration in cryptocurrency research with co-authorship analysis.We identify four major streams of research:(i)return prediction and measurement of cryptocurrency volatility,(ii)(in)efficiency of cryptocurrencies,(iii)price dynamics and bubbles in cryptocurrencies,and(iv)the diversification,safe haven,and hedging properties of Bitcoin.We conclude that highly traded cryptocurrencies’investment features and economic outcomes are analyzed predominantly on a tick-by-tick basis.This study also provides recommendations for future studies.展开更多
In stock markets,trading volumes serve as a crucial variable,acting as a measure for a security’s liquidity level.To evaluate liquidity risk exposure,we examine the process of volume drawdown and measures of crash-re...In stock markets,trading volumes serve as a crucial variable,acting as a measure for a security’s liquidity level.To evaluate liquidity risk exposure,we examine the process of volume drawdown and measures of crash-recovery within fluctuating time frames.These moving time windows shield our financial indicators from being affected by the massive transaction volume,a characteristic of the opening and closing of stock markets.The empirical study is conducted on the high-frequency financial volumes of Tesla,Netflix,and Apple,spanning from April to September 2022.First,we model the financial volume time series for each stock using a semi-Markov model,known as the weighted-indexed semi-Markov chain(WISMC)model.Second,we calculate both real and synthetic drawdown-based risk indicators for comparison purposes.The findings reveal that our risk measures possess statistically different distributions,contingent on the selected time windows.On a global scale,for all assets,financial risk indicators calculated on data derived from the WISMC model closely align with the real ones in terms of Kullback-Leibler divergence.展开更多
A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and dat...A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.展开更多
This study attempts to examine the colligational use of the high-frequency verbs DO, HAVE and BE in Chinese EFL learners'written production in the CIA (Contrastive Interlanguage Analysis) approach. Findings of the...This study attempts to examine the colligational use of the high-frequency verbs DO, HAVE and BE in Chinese EFL learners'written production in the CIA (Contrastive Interlanguage Analysis) approach. Findings of the study indicate that: Chinese learners use a much smaller variety of colligational patterns, they tend to underuse the inflected forms of these verbs in their colligations and they tend to use pronouns as the subject of these verbs. Though at advanced level, they still have difficulty with grammar in terms of tense, aspect and voice. The influence of L1 transfer, the learners'spoken style in writing, the classroom teaching and the learners'use of the avoidance strategy are thought to be the major reasons. The findings in this study may have some light to shed on the EFL teaching and research in China.展开更多
AIM: To study the influence of high-frequency electric surgical knives on healing of abdominal incision. METHODS: Two hundred and forty white rats were divided into 10^0, 10^2, 10^5, and 10^8 groups and rat models o...AIM: To study the influence of high-frequency electric surgical knives on healing of abdominal incision. METHODS: Two hundred and forty white rats were divided into 10^0, 10^2, 10^5, and 10^8 groups and rat models of abdominal operation were induced by using electric surgical knives and common lancets respectively. Then they were respectively given hypodermic injections of normal saline and 0.2 mL quantitative mixture of Escherichia coil, Staphylococcus aureus and Pseudornonas aeruginosa at a concentration of 10^2, 10^5 and 10^8. On the basis of the animal experiment, 220 patients undergoing abdominal operations (above type Ⅱ) were randomly allocated into one of following three groups: electric knife (EK, 93 cases), electro-coagulation (EC, 55 cases) and control (72 cases). High-frequency electric surgical knives were used to dissect abdominal tissues and electro-coagulation for hemostasis in EK group. Common lancets and electro-coagulation were applied in EC group. Common lancets and tieing silk suture were used in the controls. RESULTS: In all the groups except group 10^0, infection rate of incisional wounds made by electric surgical knives were remarkably higher than that with common lancets. Furthermore, there were significant differences in groups 10^2, 10^5, and 10^8 (P 〈 0.05), but not in group 10^0 (P 〉 0.05) between EK and EC groups. Clinical studies showed a delayed wound healing in 16 cases (17.20%) in EK, 11 cases (16.36%) in EC and 2 cases (2.86%)in the control groups. A significant difference between EK and the control groups (χ^2= 8.57, P 〈 0.01), and between EC and the control groups (χ^2 = 5.66, P 〈 0.05) was observed, but not between EK and EC (χ^2= 0.017, P 〉 0.05). CONCLUSION: High-frequency electric knives may remarkably delay abdominal incision healing. Its application should be minimized so as to reduce the possibility of postoperative complications.展开更多
Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu...Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.展开更多
BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields muc...BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields much improved spatial resolution and therefore, might show better image in BA diagnostic examination. The present study was to evaluate the HUS on the diagnosis of BA in infants with jaundice. METHODS: Fifty-one infants with neonatal jaundice were scanned with ultrasonography. Images included gallbladder, bile duct, right hepatic artery (RHA), portal vein (PV) and triangular cord (TC) sign, magnetic resonance imaging and additionally laboratory tests and histopathology reports were assessed. RESULTS: Twenty-three BA and 28 non-BA cases were con firmed. The sensitivity, specificity, and accuracy of HUS were 91.3%, 92.9%, and 92.2%, respectively. All of these indices were significantly higher than those of conventional ultrasonography (P【0.01) and MR cholangiopancreatography (P【0.05). The HUS features, included a positive TC sign, an increased RHA diameter and RHA-diameter to portal-vein-diameter ratio (RHA/PV) and abnormal gallbladder, were important in the diagnosis of BA. CONCLUSION: HUS provided better imaging of BA and should be considered as a primary modality in the differential diagnosis of infantile jaundice.展开更多
基金the National Natural Science Foundation of China(42074134,42474152,42374150)CNPC Innovation Found(2024DQ02-0152).
文摘The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.
文摘Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.
基金supported by the National Science Foundation of China(No.12127806,No.62175195 and No.12304382)the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies.
文摘Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames.
文摘China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and discontinuous,and there is no definite geological law to follow,which seriously threatens the safety of coal mine production and personnel life.Conventional ground geophysical methods have low accuracy in detecting goaf areas affected by mechanical interference from open-pit mines,especially for waterless goaf areas,which cannot be detected by existing methods.This article proposes the use of high-frequency electromagnetic waves for goaf detection.The feasibility of using drilling radar to detect goaf was theoretically analyzed,and a goaf detection model was established.The response characteristics of different fillers in the goaf under different frequencies of high-frequency electromagnetic waves were simulated and analyzed.In a certain open-pit mine in Inner Mongolia,100MHz high-frequency electromagnetic waves were used to detect the goaf through directional drilling on the ground.After detection,excavation verification was carried out,and the location of one goaf detected was verified.The results of engineering practice show that the application of high-frequency electromagnetic waves in goaf detection expands the detection radius of boreholes,has the advantages of high efficiency and accuracy,and has important theoretical and practical significance.
文摘Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderly GP patients admitted between June 2021 and December 2022 were selected.Patients were randomly divided into two groups:the painless group(50 cases)underwent high-frequency electrosurgical knife surgery guided by PDE,while the conventional group(50 cases)underwent the same surgery guided by traditional digestive endoscopy(DE).The total treatment efficacy,perioperative indicators,gastrointestinal hormone levels,oxidative stress(OS)markers,and complication rates were compared between the two groups.Results:The total treatment efficacy in the painless group was higher than that in the conventional group,and perioperative indicators were superior in the painless group(P<0.05).One week after treatment,the gastrointestinal hormone levels and OS-related markers in the painless group were better than those in the conventional group(P<0.05).The complication rate in the painless group was lower than in the conventional group(P<0.05).Conclusion:High-frequency electrosurgical knife surgery guided by PDE improves the effectiveness of polyp removal in elderly GP patients and accelerates postoperative recovery.It also protects gastrointestinal function,reduces postoperative OS,and ensures higher surgical safety.
文摘Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.
文摘BACKGROUND Sudden sensorineural hearing loss(SSNHL),characterized by a rapid and unexplained loss of hearing,particularly at moderate to high frequencies,presents a significant clinical challenge.The therapeutic use of methylprednisolone sodium succinate(MPSS)via different administration routes,in combination with conventional medications,remains a topic of interest.AIM To compare the therapeutic efficacy of MPSS administered via different routes in combination with conventional drugs for the treatment of mid-to high-frequency SSNHL.METHODS The medical records of 109 patients with mid-to high-frequency SSNHL were analyzed.The patients were divided into three groups based on the route of administration:Group A[intratympanic(IT)injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection],Group B(intravenous injection of MPSS combined with mecobalamin and Ginkgo biloba leaf extract injection),and Group C(single IT injection of MPSS).The intervention effects were compared and analyzed.RESULTS The posttreatment auditory thresholds in Group A(21.23±3.34)were significantly lower than those in Groups B(28.52±3.36)and C(30.23±4.21;P<0.05).Group A also exhibited a significantly greater speech recognition rate(92.23±5.34)than Groups B and C.The disappearance time of tinnitus,time to hearing recovery,and disappearance time of vertigo in Group A were significantly shorter than those in Groups B and C(P<0.05).The total effective rate in Group A(97.56%)was significantly greater than that in Groups B and C(77.14%and 78.79%,χ^(2)=7.898,P=0.019).Moreover,the incidence of adverse reactions in Groups A and C was significantly lower than that in Group B(4.88%,3.03%vs 2.57%,χ^(2)=11.443,P=0.003),and the recurrence rate in Group A was significantly lower than that in Groups B and C(2.44%vs 20.00%vs 21.21%,χ^(2)=7.120,P=0.028).CONCLUSION IT injection of MPSS combined with conventional treatment demonstrates superior efficacy and safety compared to systemic administration via intravenous infusion and a single IT injection of MPSS.This approach effectively improves patients'hearing and reduces the risk of disease recurrence.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2682023CX019National Natural Science Foundation of China under Grant U23B6007 and Grant 52307141Sichuan Science and Technology Program under Grant 2024NSFSC0115。
文摘High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.
基金Smart Integration Key Technologies and Application Demonstrations of Large Scale Underground Space Disaster Prevention and Reduction in Guangzhou International Financial City([2021]–KJ058).
文摘The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3804100)the National Natural Science Foundation of China(Grant Nos.52371149 and 52171153).
文摘Enhancing saturation magnetic flux density(Bs)while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization,high-frequency,and energy-saving of modern power electronic devices.In this work,we first designed a high-Bs Fe_(77.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)alloy by appropriately reducing the non-magnetic elements in typical Finemet nanocrystalline alloys,and subsequently alloyed 2 at%Co,Al,and Mo,respectively.The effects of alloying elements on structure and static and high-frequency magnetic properties were studied.The results reveal that,alloying Al or Mo reduces the averageα-Fe grain size(Dα-Fe)in the nanocrystalline alloys,while Co exhibits a slight influence.The added Al or Mo results in decreases in both the Bs and coercivity(Hc)of the nanocrystalline alloys,whereas Co increases the Bs without changing Hc,and meanwhile,all alloying elements show minimal effects on effective permeability(μe).Furthermore,the addition of Co,Al,or Mo lowers the core loss(Pcv)at 0.2 T/100 kHz of the based nanocrystalline alloy with reductions of 10.9%,29.6%,and 26.8%,respectively.A Fe_(75.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)Al_(2)nanocrystalline alloy exhibits outstanding soft magnetic properties with Bs,Hc,μe at 10 kHz and 100 kHz,and Pcv at 0.2 T/100 kHz of 1.34 T,0.8 A/m,27,400,18,000,and 350 kW/m3,respectively.The reduction in Pcv is primarily attributed to the decreased eddy current losses,originating from the increased electrical resistivity by elements alloying.
基金supported by Grants from the National Natural Science Foundation of China(42004010)the Beijing Natural Science Foundation(8204077)。
文摘Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
文摘BACKGROUND Superimposed high-frequency jet ventilation(SHFJV)is suitable for respiratory motion reduction and essential for effective lung tumor ablation.Fluid filling of the target lung wing one-lung flooding(OLF)is necessary for therapeutic ultrasound applications.However,whether unilateral SHFJV allows adequate hemodynamics and gas exchange is unclear.AIM To compared SHFJV with pressure-controlled ventilation(PCV)during OLF by assessing hemodynamics and gas exchange in different animal positions.METHODS SHFJV or PCV was used alternatingly to ventilate the non-flooded lungs of the 12 anesthetized pigs during OLF.The animal positions were changed from left lateral position to supine position(SP)to right lateral position(RLP)every 30 min.In each position,ventilation was maintained for 15 min in both modalities.Hemodynamic variables and arterial blood gas levels were repeatedly measured.RESULTS Unilateral SHFJV led to lower carbon dioxide removal than PCV without abnormally elevated carbon dioxide levels.SHFJV slightly decreased oxygenation in SP and RLP compared with PCV;the lowest values of PaO_(2) and PaO_(2)/FiO_(2) ratio were found in SP[13.0;interquartile range(IQR):12.6-5.6 and 32.5(IQR:31.5-38.9)kPa].Conversely,during SHFJV,the shunt fraction was higher in all animal positions(highest in the RLP:0.30).CONCLUSION In porcine model,unilateral SHFJV may provide adequate ventilation in different animal positions during OLF.Lower oxygenation and CO_(2) removal rates compared to PCV did not lead to hypoxia or hypercapnia.SHFJV can be safely used for lung tumor ablation to minimize ventilation-induced lung motion.
文摘As the crypto-asset ecosystem matures,the use of high-frequency data has become increasingly common in decentralized finance literature.Using bibliometric analysis,we characterize the existing cryptocurrency literature that employs high-frequency data.We highlighted the most influential authors,articles,and journals based on 189 articles from the Scopus database from 2015 to 2022.This approach enables us to identify emerging trends and research hotspots with the aid of co-citation and cartographic analyses.It shows knowledge expansion through authors’collaboration in cryptocurrency research with co-authorship analysis.We identify four major streams of research:(i)return prediction and measurement of cryptocurrency volatility,(ii)(in)efficiency of cryptocurrencies,(iii)price dynamics and bubbles in cryptocurrencies,and(iv)the diversification,safe haven,and hedging properties of Bitcoin.We conclude that highly traded cryptocurrencies’investment features and economic outcomes are analyzed predominantly on a tick-by-tick basis.This study also provides recommendations for future studies.
文摘In stock markets,trading volumes serve as a crucial variable,acting as a measure for a security’s liquidity level.To evaluate liquidity risk exposure,we examine the process of volume drawdown and measures of crash-recovery within fluctuating time frames.These moving time windows shield our financial indicators from being affected by the massive transaction volume,a characteristic of the opening and closing of stock markets.The empirical study is conducted on the high-frequency financial volumes of Tesla,Netflix,and Apple,spanning from April to September 2022.First,we model the financial volume time series for each stock using a semi-Markov model,known as the weighted-indexed semi-Markov chain(WISMC)model.Second,we calculate both real and synthetic drawdown-based risk indicators for comparison purposes.The findings reveal that our risk measures possess statistically different distributions,contingent on the selected time windows.On a global scale,for all assets,financial risk indicators calculated on data derived from the WISMC model closely align with the real ones in terms of Kullback-Leibler divergence.
基金supported by National Natural Science Foundation of China(No.11706151)。
文摘A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.
文摘This study attempts to examine the colligational use of the high-frequency verbs DO, HAVE and BE in Chinese EFL learners'written production in the CIA (Contrastive Interlanguage Analysis) approach. Findings of the study indicate that: Chinese learners use a much smaller variety of colligational patterns, they tend to underuse the inflected forms of these verbs in their colligations and they tend to use pronouns as the subject of these verbs. Though at advanced level, they still have difficulty with grammar in terms of tense, aspect and voice. The influence of L1 transfer, the learners'spoken style in writing, the classroom teaching and the learners'use of the avoidance strategy are thought to be the major reasons. The findings in this study may have some light to shed on the EFL teaching and research in China.
文摘AIM: To study the influence of high-frequency electric surgical knives on healing of abdominal incision. METHODS: Two hundred and forty white rats were divided into 10^0, 10^2, 10^5, and 10^8 groups and rat models of abdominal operation were induced by using electric surgical knives and common lancets respectively. Then they were respectively given hypodermic injections of normal saline and 0.2 mL quantitative mixture of Escherichia coil, Staphylococcus aureus and Pseudornonas aeruginosa at a concentration of 10^2, 10^5 and 10^8. On the basis of the animal experiment, 220 patients undergoing abdominal operations (above type Ⅱ) were randomly allocated into one of following three groups: electric knife (EK, 93 cases), electro-coagulation (EC, 55 cases) and control (72 cases). High-frequency electric surgical knives were used to dissect abdominal tissues and electro-coagulation for hemostasis in EK group. Common lancets and electro-coagulation were applied in EC group. Common lancets and tieing silk suture were used in the controls. RESULTS: In all the groups except group 10^0, infection rate of incisional wounds made by electric surgical knives were remarkably higher than that with common lancets. Furthermore, there were significant differences in groups 10^2, 10^5, and 10^8 (P 〈 0.05), but not in group 10^0 (P 〉 0.05) between EK and EC groups. Clinical studies showed a delayed wound healing in 16 cases (17.20%) in EK, 11 cases (16.36%) in EC and 2 cases (2.86%)in the control groups. A significant difference between EK and the control groups (χ^2= 8.57, P 〈 0.01), and between EC and the control groups (χ^2 = 5.66, P 〈 0.05) was observed, but not between EK and EC (χ^2= 0.017, P 〉 0.05). CONCLUSION: High-frequency electric knives may remarkably delay abdominal incision healing. Its application should be minimized so as to reduce the possibility of postoperative complications.
基金Supported by National Natural Science Foundation of China.(Grant Nos.51605431,51675472)
文摘Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.
基金supported by agrant from the New Technology and Service Project of Tongji Hospital(2008057)
文摘BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields much improved spatial resolution and therefore, might show better image in BA diagnostic examination. The present study was to evaluate the HUS on the diagnosis of BA in infants with jaundice. METHODS: Fifty-one infants with neonatal jaundice were scanned with ultrasonography. Images included gallbladder, bile duct, right hepatic artery (RHA), portal vein (PV) and triangular cord (TC) sign, magnetic resonance imaging and additionally laboratory tests and histopathology reports were assessed. RESULTS: Twenty-three BA and 28 non-BA cases were con firmed. The sensitivity, specificity, and accuracy of HUS were 91.3%, 92.9%, and 92.2%, respectively. All of these indices were significantly higher than those of conventional ultrasonography (P【0.01) and MR cholangiopancreatography (P【0.05). The HUS features, included a positive TC sign, an increased RHA diameter and RHA-diameter to portal-vein-diameter ratio (RHA/PV) and abnormal gallbladder, were important in the diagnosis of BA. CONCLUSION: HUS provided better imaging of BA and should be considered as a primary modality in the differential diagnosis of infantile jaundice.