To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
In this study,the power generation difference between the east-west and the north-south orientation of the vertically installed heterojunction solar cell(HJT)modules was deeply discussed.East-west oriented HJT module ...In this study,the power generation difference between the east-west and the north-south orientation of the vertically installed heterojunction solar cell(HJT)modules was deeply discussed.East-west oriented HJT module has 30%higher power generation,especially in desert photovoltaic(PV)with a bimodal distribution.While the south-north one has a single peak,the same as normal PV modules.Vertical power generation technology of HJT also has less land occupation,which is of great significance for optimizing the design of photovoltaic systems.展开更多
With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power ...With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power and photovoltaics,while considering constraints on diffusion potential.Using learning curves,dynamic programming,and Bass models,this study analyzes technological diffusion trends to determine the most cost-effective development route for intermittent renewable energy power generation in China by 2060.This study simplifies reality by examining the individual diffusion processes of wind and photovoltaic power,focusing on the self-diffusion characteristics of the two technologies.The study assumes that self-diffusion is the primary driver of future development and describe the influence of multiple factors.The study finds that supportive policies are key drivers of development in the early stages of intermittent renewable energy deployment,especially for photovoltaics.The current diffusion scale of photovoltaics has a greater positive impact on its future development than that of wind power due to lower costs.In the long term,the phased goal for 2030 is projected to be met ahead of schedule,and the majority of future intermittent renewable energy output is expected to come from photovoltaics.The rapid development phases of photovoltaic and wind power conclude at similar times,but the maximum diffusion potential of photovoltaics is higher than that of wind power.Investment constraints and technological levels affect the initial and middle phases of the development path,but their effects are limited.The capacity of the power grid remains the key constraint in the entire research field.展开更多
Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power ...Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power that affects the generation capacity of power systems with a high share of renewable energy sources.Utilizing the Coupled Model Intercomparison Project Phase 6 datasets,a predictive model for low-output wind power was employed to investigate regional trends worldwide.The frequency and duration of low-output wind-power events exhibited increasing trends globally,particularly in East Asia and South America,but not in North America.By 2060,the annual total days with low-output wind power in East Asia and South America could rise to 13 and 5 d,and the maximum continuous duration of low-output wind power could reach 5 and 2 d,respectively.As wind power becomes a primary elec-tricity source,such low output could lead to shortages in energy supply within the power system,trig-gering large-scale power outages.This issue calls for critical attention when establishing power systems with a high share of renewable energy sources.The conclusions provide a basis for analyzing power supply risks and configuring flexible power sources for scenarios with a high share of renewable energy.展开更多
In the original publication,mistakenly first and corresponding affiliation is given as:Thermoelectricity Technology Center,Hangzhou Dahe Thermo-Magnetics Co.Ltd,Hangzhou 310053,ChinaThe correct first and corresponding...In the original publication,mistakenly first and corresponding affiliation is given as:Thermoelectricity Technology Center,Hangzhou Dahe Thermo-Magnetics Co.Ltd,Hangzhou 310053,ChinaThe correct first and corresponding affiliation is:State Key Laboratory of Silicon Materials,School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,China.展开更多
With the continuous adjustment of the energy structure,photovoltaic(PV)power generation projects are increasing,playing a crucial role in promoting the application of clean energy.However,the current audit of complete...With the continuous adjustment of the energy structure,photovoltaic(PV)power generation projects are increasing,playing a crucial role in promoting the application of clean energy.However,the current audit of completed final accounts for photovoltaic power generation projects faces many challenges,such as incomplete institutional processes,scattered archive management materials,inadequate digital intelligence systems,and insufficient analysis of final account amounts.Based on this,this article aims to deeply analyze these issues and propose targeted audit suggestions to standardize the construction and audit work of photovoltaic power generation projects and promote the sustainable and healthy development of the photovoltaic power generation business.展开更多
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod...This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.展开更多
This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved reg...This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved regions.The research aims to analyze and evaluate various business models in terms of their technical,economic,and social viability within the unique geographic and policy context of Lao PDR.There are two level of the research objectives:High Level Objectives(HLO)and Concreted Research Objectives(CRO).For HLO is that an appropriated off-grid power generation business model for Laos supports the Lao PDR Government’s commitment to promote an inclusive green growth development agenda that ensures lowered GHG emissions and increased energy efficiency.The Lao PDR National Determined Contribution(NDC)to the United Nations Framework Convention on Climate Change(UNFCCC)notes the country’s ambitious plans to lower energy consumption and reduce GHG emissions.While the CRO are focused on learning strategies,regulation and practical lessons from other countries the ASEAN region on the off-grid development and business model.To analyze and investigate the environmental strategy of business model under external and internal context and related and considered factors.And finally,this is to conclude and recommend the off-grid power generation business model as the research conclusion,which will become a support mechanism for the companies to operate consistently over many years into the future according to ambitious goal for supplying modern and save energy for rural families by 2030.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is...High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.展开更多
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
NH_(3)-SCR was one of the most promising de NO_x technologies and it has been widely applied in industrial NO_x reduction.However,with the further development of energy transformation in power generation sector,the de...NH_(3)-SCR was one of the most promising de NO_x technologies and it has been widely applied in industrial NO_x reduction.However,with the further development of energy transformation in power generation sector,the development of NH_(3)-SCR catalysts is facing some new challenges.It is becoming an urgent problem to solve low catalytic activity and stability of NH_(3)-SCR catalysts at the working condition of ultra-low temperature(≤200℃)and high concentrations of H_(2)O+SO_(2) due to the gradual deployment of new energy power plants.Furthermore,the traditional coal-fired power plants would need flexible operation with the increasing share of renewable energy generation.The NH_(3)-SCR catalysts which were applied in coal-fired power industry would be requested to work in a wide temperature window from 200℃ to 500℃ in the near future.Therefore,in this review,we summarized the progress of NH_(3)-SCR catalysts in solving these different industrial problems in recent years.And the research directions which were deserved to be focused on the development of NH_(3)-SCR catalysts for the energy transition of power generation sector are proposed.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore ...In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore the nonlinear interactions between the laser beam fields and nanoparticles(NPs),accounting for dipole-dipole interactions among the particles.Analytical expressions are derived to quantify the impact of these interactions on SH radiation power for two distinct polarizations of the laser beam.Our findings indicate that when the laser electric field is aligned parallel to the trimer's symmetry axis,there is a significant enhancement in SH radiation power compared to a single non-interacting NP,accompanied by a red-shift in the plasmon resonance peak.Conversely,when the laser electric field is perpendicular to the trimer axis,the SH radiation power from each NP decreases,and the plasmon resonance peak experiences a blue-shift.Additionally,we examine the influence of particle size and interparticle separation on SH generation.These results provide valuable insights into the role of interparticle interactions in enhancing nonlinear optical processes in NP assemblies,with potential implications for the design of nanophotonic devices.展开更多
We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises si...We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.展开更多
With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona...Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ...Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.展开更多
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
文摘In this study,the power generation difference between the east-west and the north-south orientation of the vertically installed heterojunction solar cell(HJT)modules was deeply discussed.East-west oriented HJT module has 30%higher power generation,especially in desert photovoltaic(PV)with a bimodal distribution.While the south-north one has a single peak,the same as normal PV modules.Vertical power generation technology of HJT also has less land occupation,which is of great significance for optimizing the design of photovoltaic systems.
基金support from the National Natural Science Foundation of China[Grant No.71874121,No.71671121 and No.71431005]the support from the National Key R&D Programme of China[Grant No.2018YFC0704400]+1 种基金the support from Major Projects of the National Social Science Fund of China[Grant No.17ZDA065]the support from the General Project of the Humanities and Social Science Fund of the Chinese Ministry of Education[Grant No.21YJA630023].
文摘With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power and photovoltaics,while considering constraints on diffusion potential.Using learning curves,dynamic programming,and Bass models,this study analyzes technological diffusion trends to determine the most cost-effective development route for intermittent renewable energy power generation in China by 2060.This study simplifies reality by examining the individual diffusion processes of wind and photovoltaic power,focusing on the self-diffusion characteristics of the two technologies.The study assumes that self-diffusion is the primary driver of future development and describe the influence of multiple factors.The study finds that supportive policies are key drivers of development in the early stages of intermittent renewable energy deployment,especially for photovoltaics.The current diffusion scale of photovoltaics has a greater positive impact on its future development than that of wind power due to lower costs.In the long term,the phased goal for 2030 is projected to be met ahead of schedule,and the majority of future intermittent renewable energy output is expected to come from photovoltaics.The rapid development phases of photovoltaic and wind power conclude at similar times,but the maximum diffusion potential of photovoltaics is higher than that of wind power.Investment constraints and technological levels affect the initial and middle phases of the development path,but their effects are limited.The capacity of the power grid remains the key constraint in the entire research field.
基金supported by the Joint Research Fund in Smart Grid(U1966601)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and the State Grid Cor-poration of China(SGCC).
文摘Establishing power systems with a high share of renewable energy sources is a pivotal step toward achieving a globally sustainable transition to green and low-carbon energy.This study focuses on low-output wind power that affects the generation capacity of power systems with a high share of renewable energy sources.Utilizing the Coupled Model Intercomparison Project Phase 6 datasets,a predictive model for low-output wind power was employed to investigate regional trends worldwide.The frequency and duration of low-output wind-power events exhibited increasing trends globally,particularly in East Asia and South America,but not in North America.By 2060,the annual total days with low-output wind power in East Asia and South America could rise to 13 and 5 d,and the maximum continuous duration of low-output wind power could reach 5 and 2 d,respectively.As wind power becomes a primary elec-tricity source,such low output could lead to shortages in energy supply within the power system,trig-gering large-scale power outages.This issue calls for critical attention when establishing power systems with a high share of renewable energy sources.The conclusions provide a basis for analyzing power supply risks and configuring flexible power sources for scenarios with a high share of renewable energy.
文摘In the original publication,mistakenly first and corresponding affiliation is given as:Thermoelectricity Technology Center,Hangzhou Dahe Thermo-Magnetics Co.Ltd,Hangzhou 310053,ChinaThe correct first and corresponding affiliation is:State Key Laboratory of Silicon Materials,School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,China.
文摘With the continuous adjustment of the energy structure,photovoltaic(PV)power generation projects are increasing,playing a crucial role in promoting the application of clean energy.However,the current audit of completed final accounts for photovoltaic power generation projects faces many challenges,such as incomplete institutional processes,scattered archive management materials,inadequate digital intelligence systems,and insufficient analysis of final account amounts.Based on this,this article aims to deeply analyze these issues and propose targeted audit suggestions to standardize the construction and audit work of photovoltaic power generation projects and promote the sustainable and healthy development of the photovoltaic power generation business.
基金supported by the 2022 Sanya Science and Technology Innovation Project,China(No.2022KJCX03)the Sanya Science and Education Innovation Park,Wuhan University of Technology,China(Grant No.2022KF0028)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(Grant No.2021JJLH0036).
文摘This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system.
文摘This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved regions.The research aims to analyze and evaluate various business models in terms of their technical,economic,and social viability within the unique geographic and policy context of Lao PDR.There are two level of the research objectives:High Level Objectives(HLO)and Concreted Research Objectives(CRO).For HLO is that an appropriated off-grid power generation business model for Laos supports the Lao PDR Government’s commitment to promote an inclusive green growth development agenda that ensures lowered GHG emissions and increased energy efficiency.The Lao PDR National Determined Contribution(NDC)to the United Nations Framework Convention on Climate Change(UNFCCC)notes the country’s ambitious plans to lower energy consumption and reduce GHG emissions.While the CRO are focused on learning strategies,regulation and practical lessons from other countries the ASEAN region on the off-grid development and business model.To analyze and investigate the environmental strategy of business model under external and internal context and related and considered factors.And finally,this is to conclude and recommend the off-grid power generation business model as the research conclusion,which will become a support mechanism for the companies to operate consistently over many years into the future according to ambitious goal for supplying modern and save energy for rural families by 2030.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2682023CX019National Natural Science Foundation of China under Grant U23B6007 and Grant 52307141Sichuan Science and Technology Program under Grant 2024NSFSC0115。
文摘High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping.
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.
基金financially supported by the National Natural Science Foundation of China(No.52072306)the National Key R&D Program of China(No.2021YFB3701500)the Fundamental Research Funds for the Central Universities(Nos.3102019PJ008 and 3102018JCC002)。
文摘NH_(3)-SCR was one of the most promising de NO_x technologies and it has been widely applied in industrial NO_x reduction.However,with the further development of energy transformation in power generation sector,the development of NH_(3)-SCR catalysts is facing some new challenges.It is becoming an urgent problem to solve low catalytic activity and stability of NH_(3)-SCR catalysts at the working condition of ultra-low temperature(≤200℃)and high concentrations of H_(2)O+SO_(2) due to the gradual deployment of new energy power plants.Furthermore,the traditional coal-fired power plants would need flexible operation with the increasing share of renewable energy generation.The NH_(3)-SCR catalysts which were applied in coal-fired power industry would be requested to work in a wide temperature window from 200℃ to 500℃ in the near future.Therefore,in this review,we summarized the progress of NH_(3)-SCR catalysts in solving these different industrial problems in recent years.And the research directions which were deserved to be focused on the development of NH_(3)-SCR catalysts for the energy transition of power generation sector are proposed.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘In this theoretical study,we investigate the generation of second harmonics(SH)during the interaction of a laser beam with a metallic nanoparticle(MNP)trimer.Utilizing a classical electrodynamics framework,we explore the nonlinear interactions between the laser beam fields and nanoparticles(NPs),accounting for dipole-dipole interactions among the particles.Analytical expressions are derived to quantify the impact of these interactions on SH radiation power for two distinct polarizations of the laser beam.Our findings indicate that when the laser electric field is aligned parallel to the trimer's symmetry axis,there is a significant enhancement in SH radiation power compared to a single non-interacting NP,accompanied by a red-shift in the plasmon resonance peak.Conversely,when the laser electric field is perpendicular to the trimer axis,the SH radiation power from each NP decreases,and the plasmon resonance peak experiences a blue-shift.Additionally,we examine the influence of particle size and interparticle separation on SH generation.These results provide valuable insights into the role of interparticle interactions in enhancing nonlinear optical processes in NP assemblies,with potential implications for the design of nanophotonic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12027811 and 51790524).
文摘We have designed,assembled,and tested a 4-MA,60-ns fast linear transformer driver(LTD),which is the first operating generator featuring multiple LTD modules connected in parallel.The LTD-based accelerator comprises six modules in parallel,each of which has ten-stage cavities stacked in series.The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized waterinsulated coaxial transmission line.In the water tank,the electrical pulses are transmitted down by six horizontal tri-plate transmission lines.A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region.In the vacuum,the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes.Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays.The machine is 3.2 m in height and 22 m in outer diameter,including support systems such as a high-voltage charge supply,magnetic core reset system,trigger system,and support platform for inner stalk installation and maintenance.A total of 1440 individual±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator.A total of 12 fiberoptic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches.At an LTD charge voltage of±85 kV,the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads.To date,the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load.With a thick-walled aluminum liner of inductance 1.81 nH,a current with peak up to 4.1 MA and rise time(10%–90%)of about 60 ns has been achieved.The current transport efficiency from the insulator stack to the liner load approaches 100%during peak times.The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area.It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
基金supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200969(L.Z.,URL:http://std.jiangsu.gov.cn/)in part by Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province under Grant 22KJB470025(L.R.,URL:http://jyt.jiangsu.gov.cn/)in part by Social People’s Livelihood Technology Plan General Project of Nantong under Grant MS12021015(L.Q.,URL:http://kjj.nantong.gov.cn/).
文摘Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms.
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grants 2023JJ40046 and 2023JJ30049.
文摘Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.