期刊文献+
共找到80,006篇文章
< 1 2 250 >
每页显示 20 50 100
Remaining Life Prediction Method for Photovoltaic Modules Based on Two-Stage Wiener Process 被引量:1
1
作者 Jie Lin Hongchi Shen +1 位作者 Tingting Pei Yan Wu 《Energy Engineering》 EI 2025年第1期331-347,共17页
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p... Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules. 展开更多
关键词 Photovoltaic modules DEGRADATION stochastic processes lifetime prediction
在线阅读 下载PDF
A Review on High-Efficiency Transfer of Graphene Films Free from Defects and Contamination
2
作者 Wenhao Yin Chong Liu Jingmin Li 《Energy & Environmental Materials》 2025年第4期227-242,共16页
Graphene,owing to its exceptional electronic,optical,thermal,and mechanical properties,has emerged as a highly promising material.Currently,the synthesis of large-area graphene films on metal substrates via chemical v... Graphene,owing to its exceptional electronic,optical,thermal,and mechanical properties,has emerged as a highly promising material.Currently,the synthesis of large-area graphene films on metal substrates via chemical vapor deposition remains the predominant approach for producing high-quality graphene.To realize the potential applications of graphene,it is essential to transfer graphene films to target substrates in a manner that is non-destructive,clean,and efficient,as this significantly affects the performance of graphene devices.This review examines the current methods for graphene transfer from three perspectives:non-destructive transfer,clean transfer,and high-efficiency transfer.It analyzes and compares the advancements and limitations of various transfer techniques.Finally,the review identifies the key challenges faced by current graphene transfer methods and anticipates future developmental prospects. 展开更多
关键词 clean transfer defect-free transfer high-efficiency transfer of graphene
在线阅读 下载PDF
Research Progress on High-efficiency Cultivation Techniques of Blueberry and Its Development Potential in Under-forest Economy
3
作者 Haineng LIN Yuzhen YU +1 位作者 Hubo JIANG Ting ZHANG 《Asian Agricultural Research》 2025年第7期12-16,共5页
Through literature analysis and case study, the introduction history, variety selection (high bush, half high bush, low bush) and regional cultivation techniques of blueberry in China were summarized, and the practica... Through literature analysis and case study, the introduction history, variety selection (high bush, half high bush, low bush) and regional cultivation techniques of blueberry in China were summarized, and the practical effects of precision cultivation (water and fertilizer integration, wild planting) and under-forest economic model (forest-blueberry-fungus system, ecological tourism) were evaluated. It provided a technical reference for expanding the planting scale of blueberry and improving the fruit quality. 展开更多
关键词 BLUEBERRY high-efficiency cultivation techniques Under-forest economy Rural revitalization
在线阅读 下载PDF
Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers:A low dosage and high-efficiency cold flow improver for diesel fuel
4
作者 Bowen Xu Jiahao Chen +3 位作者 Lulu Cui Xinyue Li Yuan Xue Sheng Han 《Chinese Chemical Letters》 2025年第5期606-609,共4页
The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-do... The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-dosage and high-efficiency CFIs for diesel,1,2,3,6-tetrahydrophthalic anhydride(THPA)was introduced as a third and polar monomer to enhance the depressive effects of alkyl methacrylatetrans anethole copolymers(C_(14)MC-TA).The terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-TA-THPA)were synthesized and compared with the binary copolymers of C_(14)MC-TA and alkyl methacrylate-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-THPA).Results showed that C_(14)MC-THPA achieved the best depressive effects on the cold filter plugging point(CFPP)and solid point(SP)by 11℃and 16℃at a dosage of 1250 mg/L and monomer ratio of 6:1,while 1500mg/L C_(14)MC-TA(1:1)reached the optimal depressive effects on the CFPP and SP by 12℃and 18℃.THPA introduction significantly improved the depressive effects of C_(14)MC-TA.Lower dosages of C_(14)MCTA-THPA in diesel exerted better improvement effects on the CFPP and SP than that of C_(14)MC-TA and C_(14)MC-THPA.When the monomer ratio and dosage were 6:0.6:0.4 and 1000 mg/L,the improvement effect of C_(14)MC-TA-THPA on diesel reached the optimum level,and the CFPP and SP were reduced by 13℃and 19℃,respectively.A 3D nonlinear surface diagram fitted by a mathematical model was also used for the first time to better understand the relationships of monomer ratios,dosages,and depressive effects of CFIs in diesel.Surface analysis results showed that C_(14)MC-TA-THPA achieved the optimum depressive effects at a monomer ratio of 6:0.66:0.34 and dosage of 1000 mg/L,and the CFPP and SP decreased by 14℃ and 19℃,respectively.The predicted results were consistent with the actual ones.Additionally,the improvement mechanism of these copolymers in diesel was also explored. 展开更多
关键词 Diesel fuel high-efficiency Cold flow properties Cold flow improvers Mathematical model
原文传递
Hydrophobic surface release and energy-level alignment of PTAA enables stable flexible perovskite solar modules
5
作者 Hua Zhong Jianxing Xia +2 位作者 Hao Tian Chuanxiao Xiao Fei Zhang 《Journal of Energy Chemistry》 2025年第10期448-454,共7页
The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mis... The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mismatch in interface energy-level alignment.Here,we introduced[2-(3,6-dimethoxy-9H-carba zol-9-yl)ethyl]phosphonic acid(MeO-2PACz)to modify the PTAA layer,which effectively suppressed surface potential fluctuations and aligned energy levels at the interface of PTAA/perovskite.Additionally,MeO-2PACz enhanced the hydrophilicity of PTAA,facilitating the fabrication of dense,uniform,and pinhole-free perovskite films on large-area flexible substrates.As a result,we achieved an F-PSM with a power conversion efficiency(PCE)of 16.6% and an aperture area of 64 cm^(2),which is the highest reported value among F-PSMs with an active area exceeding 35 cm^(2)based on PTAA.Moreover,the encapsulated module demonstrated outstanding long-term operational stability,retaining 90.2% of its initial efficiency after 1000 bending cycles(5 mm radius),87.2% after 1000 h of continuous illumination,and 80.3% under combined thermal and humid conditions(85℃ and 85% relative humidity),representing one of the most stable F-PSMs reported to date. 展开更多
关键词 FLEXIBLE Perovskite solar modules STABILITY
在线阅读 下载PDF
Wood-derived catalysts for green and stable Fenton-like chemistry:From basic mechanisms to catalytic modules and future inspiration
6
作者 Xiaoyun Lei Hanghang Zhao +2 位作者 Chao Bai Longlong Geng Xing Xu 《Chinese Chemical Letters》 2025年第10期212-225,共14页
Most carbon-based catalysts utilized in Fenton-like systems face challenges such as structural instability,susceptibility to deactivation,and a tendency to disperse during operation.Wood-derived catalysts have garnere... Most carbon-based catalysts utilized in Fenton-like systems face challenges such as structural instability,susceptibility to deactivation,and a tendency to disperse during operation.Wood-derived catalysts have garnered considerable attention due to their well-defined structures,extensive pipeline networks,superior mechanical strength,and adaptability for device customization.However,there remains a paucity of research that systematically summarizes Fenton-like systems based on wood-derived catalysts.In this review,we first summarize the structural designs of wood-derived catalysts based on nano-metal sites and single-atom sites,while also outlining their advantages and limitations applied in Fenton-like systems.Furthermore,we evaluate catalytic modules of wood-derived catalysts for scale-up and continuous Fenton-like systems.Additionally,wood-inspired catalytic materials utilizing commercial textures and their applications in Fenton-like processes are also discussed.This paper aims to comprehensively explore the fundamental mechanisms(e.g.,characteristics of catalytic sites,catalytic performance,and mechanisms)of wood-based catalysts in Fenton-like chemistry,as well as their equipment designs and application scenarios,as well as providing the insights into future developments. 展开更多
关键词 Wood-derive catalysts Nano-metal Fenton-like chemistry Scale-up application Catalytic modules
原文传递
A Two-Stage Wiener Degradation Model-Based Approach for Visual Maintenance of Photovoltaic Modules
7
作者 Jie Lin Hongchi Shen +1 位作者 Tingting Pei Yan Wu 《Energy Engineering》 2025年第6期2449-2463,共15页
This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in ... This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in insufficient or excessive maintenance.The approach begins by constructing a two-stage Wiener process performance degradation model and a remaining life prediction model under perfect maintenance conditions using historical degradation data of PV modules.This enables accurate determination of the optimal timing for postfailure corrective maintenance.To optimize the maintenance strategy,the study establishes a comprehensive cost model aimed at minimizing the long-term average cost rate.The model considers multiple cost factors,including inspection costs,preventive maintenance costs,restorative maintenance costs,and penalty costs associated with delayed fault detection.Through this optimization framework,the method determines both the optimal maintenance threshold and the ideal timing for predictive maintenance actions.Comparative analysis demonstrates that the twostage Wiener model provides superior fitting performance compared to conventional linear and nonlinear degradation models.When evaluated against traditional maintenance approaches,including Wiener process-based corrective maintenance strategies and static periodic maintenance strategies,the proposed method demonstrates significant advantages in reducing overall operational costs while extending the effective service life of PV components.The method achieves these improvements through effective coordination between reliability optimization and economic benefit maximization,leading to enhanced power generation performance.These results indicate that the proposed approach offers a more balanced and efficient solution for PV system maintenance. 展开更多
关键词 Photovoltaic module remaining life maintenance strategy Wiener modeling
在线阅读 下载PDF
Modified Near‑Infrared Annealing Enabled Rapid and Homogeneous Crystallization of Perovskite Films for Efficient Solar Modules
8
作者 Qing Chang Peng He +10 位作者 Haosong Huang Yingchen Peng Xiao Han Yang Shen Jun Yin Zhengjing Zhao Ye Yang Binghui Wu Zhiguo Zhao Jing Li Nanfeng Zheng 《Nano-Micro Letters》 2025年第11期236-250,共15页
Currently,perovskite solar cells have achieved commendable progresses in power conversion efficiency(PCE)and operational stability.However,some conventional laboratory-scale fabrication methods become challenging when... Currently,perovskite solar cells have achieved commendable progresses in power conversion efficiency(PCE)and operational stability.However,some conventional laboratory-scale fabrication methods become challenging when scaling up material syntheses or device production.Particularly,the prolonged high-temperature annealing process for the crystallization of perovskites requires a substantial amount of energy consumption and impact the modules’throughput.Here,we report a modified near-infrared annealing(NIRA)process,which involves the excess PbI_(2)engineered crystallization,efficiently reduces the preparation time for perovskite active layer to within 20 s compared to dozens of min in conventional hot plate annealing(HPA)process.The study showed that the incorporated PbI_(2)promoted the consistent nucleation of the perovskite film,leading to the subsequent rapid and homogeneous crystallization at the NIRA stage.Thus,highly crystalized perovskite film was realized with even better crystallization performance than conventional HPA-based film.Ultimately,efficient perovskite solar modules of 36 and 100 cm^(2)were readily fabricated with the optimal PCEs of 22.03%and 20.18%,respectively.This study demonstrates,for the first time,the successful achievement of homogeneous and high-quality crystallization in large-area perovskite films through rapid NIRA processing.This approach not only significantly reduces energy consumption during production,but also substantially shortens the manufacturing cycle,paving a new path toward the commercial-scale application of perovskite solar modules. 展开更多
关键词 Near-infrared annealing Homogeneous crystallization Blade coating Perovskite solar modules
在线阅读 下载PDF
Instructional Modules for Constructivist Environmental Learning in Science,Technology and Society(STS)Subject
9
作者 Randy M.Ayong 《Journal of Environmental & Earth Sciences》 2025年第4期126-137,共12页
Modules enable students to engage with content at their own pace,fostering autonomy and deeper understanding.The modular approach ensures clarity in presenting objectives,instructions,and concepts,while having illustr... Modules enable students to engage with content at their own pace,fostering autonomy and deeper understanding.The modular approach ensures clarity in presenting objectives,instructions,and concepts,while having illustrations,activities,and assessments could enhance comprehension and retention.This paper was a developmental study on STS module for college students using the ADDIE Model(Analysis,Design,Development,Implementation,and Evaluation).Sampled 673 first-year students from Northwest Samar State University participated in the study,with 299 participating in a test try-out and 374 in the students’performance evaluation.Three expert evaluators with backgrounds in science,English,and psychology,each with over four years of experience,assessed the modules to ensure alignment with the study’s constructivist learning goals and instructional integrity.The findings revealed that both students and experts had rated the instructional module positively,indicating its effectiveness in facilitating learning and completing lessons.Key aspects such as the style of illustrations and written expressions,the usefulness of learning activities,and the guidance provided by illustrations and captions were especially well-received.The module was praised for its clear objectives,understandable instructions,and engaging tasks like trivia and puzzles.Expert evaluations highlighted relevance,simplicity,and balanced emphasis on topics in the module content.Furthermore,students in test group demonstrated significant improvement in performance,with post-test scores notably higher than pre-test scores,confirming the module’s effectiveness in enhancing learning outcomes.Consequently,this paper provides an opportunity to integrate science learning with initiatives aimed at promoting environmental preservation and driving social change. 展开更多
关键词 Instructional module Environmental Topics Higher Education Curriculum Development Environmental Education
在线阅读 下载PDF
Performance and Degradation Assessment of PV Modules Exposed to Short-Term Outdoor Conditions in Two Distinct US Climatic Zones
10
作者 Bouasria Youssef Zaimi Mhammed +1 位作者 ElAinaoui Khadija Assaid El Mahdi 《Energy Engineering》 2025年第10期4195-4223,共29页
Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were... Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart. 展开更多
关键词 PV module crystalline silicon thin-film technologies outdoor test effective maximum power degradation rate single diode model
在线阅读 下载PDF
Synergistic p-doping and interface passivation of P3HT by oxidized organic small molecules toward efficient and stable perovskite solar modules
11
作者 Pin Lv Yuxi Zhang +9 位作者 Wen Liang Tan Junye Pan Yanqing Zhu Jiahui Chen Bingxin Duan Peiran Hou Min Hu Christopher R.Mc Neill Jianfeng Lu Yi-Bing Cheng 《Journal of Energy Chemistry》 2025年第9期477-484,I0013,共9页
Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic lo... Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation. 展开更多
关键词 P3HT doping Perovskite solar cells Perovskite solar modules Small molecule organic semiconductor Interface passivation
在线阅读 下载PDF
Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars 被引量:1
12
作者 Masafumi Yamaguchi Taizo Masuda +11 位作者 Kenji Araki Daisuke Sato Kan-Hua Lee Nobuaki Kojima Tatsuya Takamoto Kenichi Okumura Akinori Satou Kazumi Yamada Takashi Nakado Yusuke Zushi Mitsuhiro Yamazaki Hiroyuki Yamada 《Energy and Power Engineering》 2020年第6期375-395,共21页
Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure b... Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure based on PV. Especially, development of solar-powered vehicles as a new application is highly desired and very important for this end. This paper presents the impact of PV cell/module conversion efficiency on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission and increase in driving range of the electric based vehicles. Our studies show that the utilization of a highly-efficient (higher than 30%) PV module enables the solar-powered vehicle to drive 30 km/day without charging in the case of light weig</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t cars with elec</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ric mileage of 17</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">km/kWh under solar irrad</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">i</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ion of 3.7</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">kWh/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/day, which means that the majority of the family cars in Japan can run only by the sunlight without supplying fossil fuels. Thus, it is essential to develop high-efficiency as well as low-cost solar cells and modules for automotive applications. The analytical results developed by the authors for conversion efficiency potential of various solar cells for choosing candidates of the PV modules for automotive applications are shown. Then we overview the conversion efficiency potential and recent progress of various Si tandem solar cells, such as III-V/Si, II-VI/Si, chalcopyrite/Si, and perovskite/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of its high conversion efficiency of larger than 36% for dual-junction and 42% for triple-junction solar cells under 1-sun AM1.5 G illumination, lightweight and low-cost potentials. The analysis show</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> that III-V based multi-junction and Si based tandem solar cells are considered to be promising candidates for the automotive application. Finally, we report recent results for our 28.2% efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si triple-junction solar cell. In addition, new approaches which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> suitable for automotive applications by using III-V triple-junction, and static low concentrator PV modules are also presented. 展开更多
关键词 Solar Cell Powered Vehicle Applications high-efficiency Solar Cells Multi-Junction Solar Cells Tandem Solar Cells modules
在线阅读 下载PDF
Material removal mechanisms in ultrasonic vibration-assisted high-efficiency deep grindingγ-TiAl alloy 被引量:3
13
作者 Tao CHEN Xiaowei WANG +7 位作者 Biao ZHAO Wenfeng DING Mingyue XIONG Jiuhua XU Qi LIU Dongdong XU Yanjun ZHAO Jianhui ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期462-476,共15页
Gamma titanium-aluminum intermetallic compounds(γ-TiAl)have gained considerable attentions in the aerospace industry due to their exceptional thermal resilience and comprehensive attributes,making them a prime exampl... Gamma titanium-aluminum intermetallic compounds(γ-TiAl)have gained considerable attentions in the aerospace industry due to their exceptional thermal resilience and comprehensive attributes,making them a prime example of lightweight and advanced materials.To address the frequent occurrence of burns and severe tool deterioration during the process of high-efficiency deep grinding(HEDG)onγ-TiAl alloys,ultrasonic vibration-assisted high-efficiency deep grinding(UVHEDG)has been emerged.Results indicate that in UVHEDG,the grinding temperature is on average 15.4%lower than HEDG due to the employment of ultrasonic vibrations,enhancing coolant penetration into the grinding area and thus reducing heat generation.Besides,UVHEDG possesses superior performance in terms of grinding forces compared to HEDG.As the material removal volume(MRV)increases,the tangential grinding force(F_(t))and normal grinding force(F_(n))of UVHEDG increase but to a lesser extent than in HEDG,with an average reduction of16.25%and 14.7%,respectively.UVHEDG primarily experiences microfracture of grains,whereas HEDG undergoes large-scale wear later in the process due to increased grinding forces.The surface roughness(R_(a))characteristics of UVHEDG are superior,with the average value of R_(a)decreasing by 46.5%compared to HEDG as MRV increases.The surface morphology in UVHEDG exhibits enhanced smoothness and a shallower layer of plastic deformation.Grinding chips generated by UVHEDG show a more shear-like shape,with the applied influence of ultrasonic vibration on chip morphology,thereby impacting material removal behaviors.These aforementioned findings contribute to enhanced machining efficiency and product quality ofγ-TiAl alloys after employing ultrasonic vibrations into HEDG. 展开更多
关键词 Ultrasonic vibration-assisted high-efficiency deep grinding Grinding temperature Grinding forces Surface roughness Chip formation
原文传递
High-efficiency Carbonation Modification Methods of Recycled Coarse Aggregates 被引量:2
14
作者 张美香 YANG Xiaolin +3 位作者 丁亚红 SUN Bo ZHANG Xianggang LÜXiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期386-398,共13页
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo... To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate. 展开更多
关键词 recycled coarse aggregate pressurized carbonation high-efficiency carbonation NANO-SIO2 strengthening mechanism
原文传递
Derivations of the Schrodinger Algebra on Restricted Simple Modules 被引量:1
15
作者 HOU Ruiying WANG Shujuan 《数学进展》 CSCD 北大核心 2024年第5期1012-1018,共7页
Over an algebraically closed field of characteristic p>2,based on the results on the representation theory of special linear Lie algebra sl(2),restricted simple modules L(λ) of the Schrodinger algebra S(1)are dete... Over an algebraically closed field of characteristic p>2,based on the results on the representation theory of special linear Lie algebra sl(2),restricted simple modules L(λ) of the Schrodinger algebra S(1)are determined,and all derivations of S(1)on L(λ)are also obtained.As an application,the first cohomology of S(1)with the coefficient in L(λ)is determined. 展开更多
关键词 Schrodinger algebra restricted simple module DERIVATION COHOMOLOGY
原文传递
Analysis of thermal management and anti-mechanical abuse of multi-functional battery modules based on magneto-sensitive shear thickening fluid 被引量:1
16
作者 Yang XIONG Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期529-542,共14页
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann... Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design. 展开更多
关键词 magneto-sensitive shear thickening fluid(MSTF) battery module impact protection temperature control integrated design
在线阅读 下载PDF
Perovskite solar cells with high-efficiency exceeding 25%:A review 被引量:2
17
作者 Fengren Cao Liukang Bian Liang Li 《Energy Materials and Devices》 2024年第1期2-21,共20页
Metal halide perovskite solar cells(PSCs)are one of the most promising photovoltaic devices.Over time,many strategies have been adopted to improve PSC efficiency,and the certified efficiency has reached 26.1%.However,... Metal halide perovskite solar cells(PSCs)are one of the most promising photovoltaic devices.Over time,many strategies have been adopted to improve PSC efficiency,and the certified efficiency has reached 26.1%.However,only a few research groups have fabricated PSCs with an efficiency of>25%,indicating that achieving this efficiency remains uncommon.To develop the PSC industry,outstanding talent must be reserved with the latest technologies.Herein,we summarize the recent developments in high-efficiency PSCs(>25%)and highlight their effective strategies in crystal regulation,interface passivation,and component layer structural design.Finally,we propose perspectives based on current research to further enhance the efficiency and promote the commercialization process of PSCs. 展开更多
关键词 perovskite solar cells high-efficiency defect passivation bank regulation
在线阅读 下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules 被引量:1
18
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 Photovoltaic(PV)module residual snow and ice snow detection feature extraction image processing
在线阅读 下载PDF
Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity
19
作者 Feng Wu Xuemin Kong +3 位作者 Yixuan Liu Shuli Wang Zhong Chen Xu Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期101-111,共11页
The isolation of circulating tumor cells(CTCs)from complex biological samples is of paramount signifi-cance for advancing cancer diagnosis,prognosis,and treatment.However,the low concentration of CTCs and nonspecific ... The isolation of circulating tumor cells(CTCs)from complex biological samples is of paramount signifi-cance for advancing cancer diagnosis,prognosis,and treatment.However,the low concentration of CTCs and nonspecific adhesion of white blood cells(WBCs)present challenges that hinder the efficiency and purity of captured CTCs.Microfluidic-based strategies utilize precise fluid control at the micron level to incorporate specific micro/nanostructures or recognition molecules,enabling effective CTCs separation.Moreover,by employing surface modification designs that exhibit exceptional anti-adhesion properties against WBCs,the purity of isolated CTCs can be further enhanced.This review offers an in-depth explo-ration of recent advancements,challenges,and opportunities associated with microfluidic-based CTCs iso-lation from biological samples.Firstly,we will comprehensively introduce the microfluidic-based strate-gies for achieving high-efficiency CTCs isolation,which includes the morphological design of microchan-nels for physical force-based CTCs isolation and the specific modification of microchannel surfaces for affinity-based CTCs isolation.Subsequently,a review of recent research advances in microfluidic-based high-purity CTCs isolation is presented,focusing on strategies that decrease the nonspecific adhesion of WBCs through surface micro-/nanostructure construction or chemical and biological modification.Finally,we will summarize the article by providing the prospective opportunities and challenges for the future development of microfluidic-based CTCs isolation. 展开更多
关键词 MICROFLUIDICS ISOLATION Circulating tumor cells high-efficiency HIGH-PURITY
原文传递
High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction
20
作者 Baokang Geng Xiang Chu +5 位作者 Li Liu Lingling Zhang Shuaishuai Zhang Xiao Wang Shuyan Song Hongjie Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期480-483,共4页
The preparation of Pd-based catalysts with rich electrons and a high atom dispersion rate is of great significance for improving the reactivity of cross-coupling reactions,which is a powerful tool for pharmaceutical a... The preparation of Pd-based catalysts with rich electrons and a high atom dispersion rate is of great significance for improving the reactivity of cross-coupling reactions,which is a powerful tool for pharmaceutical and fine chemical synthesis.Here,we report a PdNi single-atom alloy(SAA)catalyst in which isolated Pd single atoms are anchored onto the surface of Ni nanoparticles(NPs)applied for Suzuki coupling reactions and Heck coupling reactions.The 0.1%PdNi SAA exhibits extraordinary catalytic activity(reaction rate:17,032.25 mmol h^(-1)gPd^(-1))toward the Suzuki cross-coupling reaction between 4-bromoanisole and phenylboronic acid at 80℃for 1 h.The excellent activity is supposed to attribute to the 100 percent utilization rate of Pd atoms and the highly stable surface zero-valance Pd atoms,which provides abundant sites and electrons for the adsorption and fracture of the C-X(X=Cl,Br,I)bond.Moreover,our work demonstrates the excellent application prospect of SAAs for cross-coupling reactions. 展开更多
关键词 Single-atom alloy Cross-coupling reaction Palladium catalysis Heterogeneous catalysis high-efficiency
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部