期刊文献+
共找到18,624篇文章
< 1 2 250 >
每页显示 20 50 100
Risk factors for paternal perinatal depression in Chinese advanced maternal age couples:A regression mixture model
1
作者 Xing Yin Juan Du +1 位作者 Shao-Lian Cai Xing-Qiang Chen 《World Journal of Psychiatry》 2026年第1期267-277,共11页
BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recogn... BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support. 展开更多
关键词 Advanced maternal age Paternal perinatal depression Fathers’mental health regression mixture model Advanced-age pregnancy Latent profile analysis
暂未订购
Generalized Functional Linear Models:Efficient Modeling for High-dimensional Correlated Mixture Exposures
2
作者 Bingsong Zhang Haibin Yu +11 位作者 Xin Peng Haiyi Yan Siran Li Shutong Luo Renhuizi Wei Zhujiang Zhou Yalin Kuang Yihuan Zheng Chulan Ou Linhua Liu Yuehua Hu Jindong Ni 《Biomedical and Environmental Sciences》 2025年第8期961-976,共16页
Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemio... Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment,including high dimensionality,correlated exposure,and subtle individual effects.Methods We proposed a novel statistical approach,the generalized functional linear model(GFLM),to analyze the health effects of exposure mixtures.GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation.The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.Results We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey(NHANES).In the first application,we examined the effects of 37 nutrients on BMI(2011–2016 cycles).The GFLM identified a significant mixture effect,with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI,respectively.For the second application,we investigated the association between four pre-and perfluoroalkyl substances(PFAS)and gout risk(2007–2018 cycles).Unlike traditional methods,the GFLM indicated no significant association,demonstrating its robustness to multicollinearity.Conclusion GFLM framework is a powerful tool for mixture exposure analysis,offering improved handling of correlated exposures and interpretable results.It demonstrates robust performance across various scenarios and real-world applications,advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology. 展开更多
关键词 Mixture exposure modeling Functional data analysis high-dimensional data Correlated exposures Environmental epidemiology
暂未订购
Semiparametric expectile regression for high-dimensional heavy-tailed and heterogeneous data
3
作者 ZHAO Jun YAN Guan-ao ZHANG Yi 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期53-77,共25页
High-dimensional heterogeneous data have acquired increasing attention and discussion in the past decade.In the context of heterogeneity,semiparametric regression emerges as a popular method to model this type of data... High-dimensional heterogeneous data have acquired increasing attention and discussion in the past decade.In the context of heterogeneity,semiparametric regression emerges as a popular method to model this type of data in statistics.In this paper,we leverage the benefits of expectile regression for computational efficiency and analytical robustness in heterogeneity,and propose a regularized partially linear additive expectile regression model with a nonconvex penalty,such as SCAD or MCP,for high-dimensional heterogeneous data.We focus on a more realistic scenario where the regression error exhibits a heavy-tailed distribution with only finite moments.This scenario challenges the classical sub-gaussian distribution assumption and is more prevalent in practical applications.Under certain regular conditions,we demonstrate that with probability tending to one,the oracle estimator is one of the local minima of the induced optimization problem.Our theoretical analysis suggests that the dimensionality of linear covariates that our estimation procedure can handle is fundamentally limited by the moment condition of the regression error.Computationally,given the nonconvex and nonsmooth nature of the induced optimization problem,we have developed a two-step algorithm.Finally,our method’s effectiveness is demonstrated through its high estimation accuracy and effective model selection,as evidenced by Monte Carlo simulation studies and a real-data application.Furthermore,by taking various expectile weights,our method effectively detects heterogeneity and explores the complete conditional distribution of the response variable,underscoring its utility in analyzing high-dimensional heterogeneous data. 展开更多
关键词 expectile regression HETEROGENEITY heavy tail partially linear additive model
在线阅读 下载PDF
Assessing Ecological Impacts of Urban Land Valuation:AI and Regression Models for Sustainable Land Management
4
作者 Yana Volkova Elena Bykowa +9 位作者 Oksana Pirogova Sergey Barykin Dmitriy Rodionov Ilya Sonts Angela Mottaeva Alexey Mikhaylov Dmitry Morkovkin N.B.A.Yousif Tomonobu Senjyu Farooq Ahmed Shah 《Research in Ecology》 2025年第2期192-208,共17页
The results of mass appraisal in many countries are used as a basis for calculating the amount of real estate tax,therefore,regardless of the methods used to calculate it,the resulting value should be as close as poss... The results of mass appraisal in many countries are used as a basis for calculating the amount of real estate tax,therefore,regardless of the methods used to calculate it,the resulting value should be as close as possible to the market value of the real estate to maintain a balance of interests between the state and the rights holders.In practice,this condition is not always met,since,firstly,the quality of market data is often very low,and secondly,some markets are characterized by low activity,which is expressed in a deficit of information on asking prices.The aim of the work is ecological valuation of land use:how regression-based mass appraisal can inform ecological conservation,land degradation,and sustainable land management.Four multiple regression models were constructed for AI generated map of land plots for recreational use in St.Petersburg(Russia)with different volumes of market information(32,30,20 and 15 units of market information with four price-forming factors).During the analysis of the quality of the models,it was revealed that the best result is shown by the model built on the maximum sample size,then the model based on 15 analogs,which proves that a larger number of analog objects does not always allow us to achieve better results,since the more analog objects there are. 展开更多
关键词 Land Use Sustainability Ecological Valuation regression modeling AI in Ecology Landscape Conservation
在线阅读 下载PDF
Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables 被引量:28
5
作者 Marla C.Maniquiz Soyoung Lee Lee-Hyung Kim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第6期946-952,共7页
Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calcu... Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long term monitoring is needed to gather more data that can be used for the development of estimation models. 展开更多
关键词 event mean concentration (EMC) multiple linear regression model LOAD non-point sources RAINFALL urban runoff
原文传递
Subgroup Analysis of a Single-Index Threshold Penalty Quantile Regression Model Based on Variable Selection
6
作者 QI Hui XUE Yaxin 《Wuhan University Journal of Natural Sciences》 2025年第2期169-183,共15页
In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This... In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This article considers subgroup analysis methods for longitudinal data containing multiple covariates and biomarkers.We divide subgroups based on whether a linear combination of these biomarkers exceeds a predetermined threshold,and assess the heterogeneity of treatment effects across subgroups using the interaction between subgroups and exposure variables.Quantile regression is used to better characterize the global distribution of the response variable and sparsity penalties are imposed to achieve variable selection of covariates and biomarkers.The effectiveness of our proposed methodology for both variable selection and parameter estimation is verified through random simulations.Finally,we demonstrate the application of this method by analyzing data from the PA.3 trial,further illustrating the practicality of the method proposed in this paper. 展开更多
关键词 longitudinal data subgroup analysis threshold model quantile regression variable selection
原文传递
Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means,support vector regression and particle swarm optimization
7
作者 CAO Yin LI Lijing LIANG Sheng 《Journal of Systems Engineering and Electronics》 2025年第2期510-522,共13页
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely... As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields. 展开更多
关键词 fiber optic gyroscope(FOG) temperature error com-pensation composite model machine learning CLUSTERING regression.
在线阅读 下载PDF
Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models 被引量:12
8
作者 Li Wang Qile Hu +3 位作者 Lu Wang Huangwei Shi Changhua Lai Shuai Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2022年第6期1932-1944,共13页
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ... Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future. 展开更多
关键词 Multiple regression model Neural networks PIG PREDICTION
在线阅读 下载PDF
ON CONFIDENCE REGIONS OF SEMIPARAMETRIC NONLINEAR REGRESSION MODELS(A GEOMETRIC APPROACH) 被引量:3
9
作者 朱仲义 唐年胜 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期68-75,共8页
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kin... A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models. 展开更多
关键词 confidence regions CURVATURES nonlinear regression models score statistic semiparametric models
在线阅读 下载PDF
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
10
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
在线阅读 下载PDF
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
11
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
在线阅读 下载PDF
Logistic regression-based risk prediction of aortic adverse remodeling following thoracic endovascular aortic repair in patients with aortic dissection
12
作者 Lian-Feng Wang Hong-Jiang Zhu +2 位作者 Cong Wang Feng Yan Chang-Zhen Qu 《World Journal of Cardiology》 2025年第12期94-102,共9页
BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate ... BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate risk prediction is essential for optimized clinical management.AIM To develop and validate a logistic regression-based risk prediction model for aortic adverse remodeling following TEVAR in patients with TBAD.METHODS This retrospective observational cohort study analyzed 140 TBAD patients undergoing TEVAR at a tertiary center(2019–2024).Based on European guidelines,patients were categorized into adverse remodeling(aortic growth rate>2.9 mm/year,n=45)and favorable remodeling groups(n=95).Comprehensive variables(clinical/imaging/surgical)were analyzed using multivariable logistic regression to develop a predictive model.Model performance was assessed via receiver operating characteristic-area under the curve(AUC)and Hosmer-Lemeshow tests.RESULTS Multivariable analysis identified several strong independent predictors of negative aortic remodeling.Larger false lumen diameter at the primary entry tear[odds ratio(OR):1.561,95%CI:1.197–2.035;P=0.001]and patency of the false lumen(OR:5.639,95%CI:4.372-8.181;P=0.004)were significant risk factors.False lumen involvement extending to the thoracoabdominal aorta was identified as the strongest predictor,significantly increasing the risk of adverse remodeling(OR:11.751,95%CI:9.841-15.612;P=0.001).Conversely,false lumen involvement confined to the thoracic aorta demonstrated a significant protective effect(OR:0.925,95%CI:0.614–0.831;P=0.015).The prediction model exhibited excellent discrimination(AUC=0.968)and calibration(Hosmer-Lemeshow P=0.824).CONCLUSION This validated risk prediction model identifies aortic adverse remodeling with high accuracy using routinely available clinical parameters.False lumen involvement thoracoabdominal aorta is the strongest predictor(11.751-fold increased risk).The tool enables preoperative risk stratification to guide tailored TEVAR strategies and improve long-term outcomes. 展开更多
关键词 Thoracic endovascular aortic repair Aortic dissection Adverse remodeling Risk prediction model False lumen Thoracoabdominal involvement Endovascular repair Logistic regression
暂未订购
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
13
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Selection of regression models for predicting strength and deformability properties of rocks using GA 被引量:9
14
作者 Manouchehrian Amin Sharifzadeh Mostafa +1 位作者 Hamidzadeh Moghadam Rasoul Nouri Tohid 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期492-498,共7页
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models... Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy. 展开更多
关键词 regression models Genetic algorithms Heuristics Uniaxial compressive strength Modulus of elasticity Rock index property
在线阅读 下载PDF
High-Dimensional Schwarzian Derivatives and Painlevé Integrable Models 被引量:1
15
作者 ZHANG Shun-Li TANG Xiao-Yan LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第11期513-516,共4页
Because all the known integrable models possess Schwarzian forms with Mobious transformation invariance,it may be one of the best ways to find new integrable models starting from some suitable Mobious transformation i... Because all the known integrable models possess Schwarzian forms with Mobious transformation invariance,it may be one of the best ways to find new integrable models starting from some suitable Mobious transformation invariant equations. In this paper, we study the Painlevé integrability of some special (3+1)-dimensional Schwarzian models. 展开更多
关键词 Mobious invariance Schwarzian derivatives high-dimensional INTEGRABLE models
在线阅读 下载PDF
Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics 被引量:3
16
作者 Krish J.Madarang Joo-Hyon Kang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第6期1313-1320,共8页
Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive mode... Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R2 and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. 展开更多
关键词 storrnwater urban runoff linear regression model storm water management model total suspendid solids
原文传递
Linear-regression models and algorithms based on the Total-Least-Squares principle 被引量:1
17
作者 Ding Shijun Jiang Weiping Shen Zhijuani 《Geodesy and Geodynamics》 2012年第2期42-46,共5页
In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dep... In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory. 展开更多
关键词 Total-Least-Squares (TLS) principle regression analysis adjustment model EQUIVALENCE
原文传递
Change-Point Detection for General Nonparametric Regression Models 被引量:1
18
作者 Murray D. Burke Gildas Bewa 《Open Journal of Statistics》 2013年第4期261-267,共7页
A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underly... A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes. 展开更多
关键词 CHANGE-POINT Detection NONPARAMETRIC regression models WEIGHTED BOOTSTRAP
在线阅读 下载PDF
Double-Penalized Quantile Regression in Partially Linear Models 被引量:1
19
作者 Yunlu Jiang 《Open Journal of Statistics》 2015年第2期158-164,共7页
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus... In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset. 展开更多
关键词 QUANTILE regression PARTIALLY LINEAR model Heavy-Tailed DISTRIBUTION
在线阅读 下载PDF
COVID‑19 and tourism sector stock price in Spain:medium‑term relationship through dynamic regression models 被引量:1
20
作者 Isabel Carrillo‑Hidalgo Juan Ignacio Pulido‑Fernández +1 位作者 JoséLuis Durán‑Román Jairo Casado‑Montilla 《Financial Innovation》 2023年第1期257-280,共24页
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris... The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector. 展开更多
关键词 COVID-19 Stock exchange Tourism stock Dynamic regression models Spain
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部