In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral deriv...In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.展开更多
The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-fun...The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.展开更多
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the...In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.展开更多
In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an outp...In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.展开更多
The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ...The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is ...In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is employed to estimate both the unknown system states and uncertainties so that the restriction that the system states should be completely measurable is relaxed,and a full-order sliding mode controller is designed based on the ESO estimation to overcome the chattering problem existing in ordinary reduced-order sliding mode control. Simulation results show that the proposed method facilitates the practical application with respect to good tracking performance and chattering elimination.展开更多
This paper addresses the teachability/controllability of high order mix-valued logical control networks by using the semi-tensor product method, and presents some necessary and sufficient conditions for the reachabili...This paper addresses the teachability/controllability of high order mix-valued logical control networks by using the semi-tensor product method, and presents some necessary and sufficient conditions for the reachability/controllability. The high order mix-valued logical network is converted into an algebraic form first, baaed on which the reachability/controllability of the system is then investigated, and several necessary and sufficient conditions are established. The study of several illustrative examples shows that our new method is very effective in dealing with the reachability/controllability of high order mix-valued logical control networks.展开更多
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.
基金Supported by Program for New Century Excellent Talents in University of China (NCET-05-0607), National Natural Science Foundation of China (60774010), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
基金Sponsored by the Foundation of Jilin Educational Committee(Grant No.22201-2221010195)
文摘In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.
文摘The paper presents an output feedback controller design method for high-order servo system with the constraints of multiple indices by using satisfactory control theory. The control strategy is to convert transfer-function form of two-loop servo system into state-space form and assign the system poles in the specified region and H_∞ attenuation degree in the given range with the Riccati matrix inequality so that the closed-loop system has good dynamics and robust quality. A numeric example is given to show the effectiveness of the proposed approach.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB316400)National Natural Science Foundation of China(Nos.61171034 and 61273134)
文摘In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.
文摘In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly characterized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable switched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.
基金supported by the National Natural Science Foundation of China(9101601861273092+3 种基金61203012)the Foundation for Key Program of Ministry of Education of China(311012)the Key Program for Basic Research of Tianjin(11JCZDJC25100)the Key Program of Tianjin Natural Science(12JCZDJC30300)
文摘The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金supported by the National Natural Science Foundation of China under Grant No.61403343the China Postdoctoral Science Foundation funded project under Grant No.2015M580521
文摘In this paper, a full-order sliding mode control based on extended state observer(FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer(ESO) is employed to estimate both the unknown system states and uncertainties so that the restriction that the system states should be completely measurable is relaxed,and a full-order sliding mode controller is designed based on the ESO estimation to overcome the chattering problem existing in ordinary reduced-order sliding mode control. Simulation results show that the proposed method facilitates the practical application with respect to good tracking performance and chattering elimination.
基金supported by the National Natural Science Foundation of China under Grant Nos.61074068,61034007,61174036the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Natural Science Foundation of Shandong Province under Grant No.ZR2010FM013
文摘This paper addresses the teachability/controllability of high order mix-valued logical control networks by using the semi-tensor product method, and presents some necessary and sufficient conditions for the reachability/controllability. The high order mix-valued logical network is converted into an algebraic form first, baaed on which the reachability/controllability of the system is then investigated, and several necessary and sufficient conditions are established. The study of several illustrative examples shows that our new method is very effective in dealing with the reachability/controllability of high order mix-valued logical control networks.