期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Unsteady aerodynamic modeling and analysis of aircraft model in multi-DOF coupling maneuvers at high angles of attack with attention mechanism
1
作者 Wenzhao DONG Xiaoguang WANG +1 位作者 Dongbo HAN Qi LIN 《Chinese Journal of Aeronautics》 2025年第6期349-361,共13页
Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg... Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack. 展开更多
关键词 Unsteady aerodynamics Aerodynamic modeling high angle of attack Wind tunnel test Attention mechanism
原文传递
Unsteady aerodynamic modeling at high angles of attack using support vector machines 被引量:28
2
作者 Wang Qing Qian Weiqi He Kaifeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期659-668,共10页
Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determ... Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs. 展开更多
关键词 Aerodynamic modeling high angle of attack Support vector machines(SVMs) Unsteady aerodynamics Wind tunnel test
原文传递
ASYMMETRIC VORTICES FLOW OVER SLENDER BODY AND ITS ACTIVE CONTROL AT HIGH ANGLE OF ATTACK 被引量:17
3
作者 邓学蓥 王延奎 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期567-579,共13页
The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda... The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks. 展开更多
关键词 asymmetric vortex flow control high angle of attack aerodynamics slender body
在线阅读 下载PDF
Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack 被引量:3
4
作者 Shi Zhongke Fan Li 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期151-160,共10页
To investigate the longitudinal motion stability of aircraft maneuvers conveniently, a new stability analysis approach is presented in this paper. Based on describing longitudinal aerodynamics at high angle-of-attack ... To investigate the longitudinal motion stability of aircraft maneuvers conveniently, a new stability analysis approach is presented in this paper. Based on describing longitudinal aerodynamics at high angle-of-attack (a &lt; 50 ) motion by polynomials, a union structure of two-order differential equation is suggested. By means of nonlinear theory and method, analytical and global bifurcation analyses of the polynomial differential systems are provided for the study of the nonlinear phenomena of high angle-of-attack flight. Applying the theories of bifurcations, many kinds of bifurcations, such as equilibrium, Hopf, homoclinic (heteroclinic) orbit and double limit cycle bifurcations are discussed and the existence conditions for these bifurcations as well as formulas for calculating bifurcation curves are derived. The bifurcation curves divide the parameter plane into several regions; moreover, the complete bifurcation diagrams and phase portraits in different regions are obtained. Finally, our conclusions are applied to analyzing the stability and bifurcations of a practical example of a high angle-of-attack flight as well as the effects of elevator deflection on the asymptotic stability regions of equilibrium. The model and analytical methods presented in this paper can be used to study the nonlinear flight dynamic of longitudinal stall at high angle of attack. 展开更多
关键词 BIFURCATION high angle of attack Longitudinal motion POLYNOMIALS STABILITY
原文传递
Control of Asymmetric Flow Fields of Slender Bodies at High Angle of Attack 被引量:4
5
作者 明晓 顾蕴松 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第2期168-174,共7页
The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack... The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed. 展开更多
关键词 high angle of attack asymmetric vortex pattern flow control
在线阅读 下载PDF
Experimental investigation of influence of strake wings on self-induced roll motion at high angles of attack 被引量:3
6
作者 Geng Xi Shi Zhiwei Cheng Keming 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1591-1601,共11页
The modern high performance air vehicles are required to have extreme maneuverability,which includes the ability of controlled maneuvers at high angle of attack. However, the nonlinear and unsteady aerodynamic phenome... The modern high performance air vehicles are required to have extreme maneuverability,which includes the ability of controlled maneuvers at high angle of attack. However, the nonlinear and unsteady aerodynamic phenomena, such as flow separation, vortices interaction, and vortices breaking down, will occur during the flight at high angle of attack, which could induce the uncommanded motions for the air vehicles. For the high maneuverable and agile air missile, the nonlinear roll motions would occur at the high angle of attack. The present work is focused on the selfinduced nonlinear roll motion for a missile configuration and discusses the influence of the strake wings on the roll motion according to the results from free-to-roll test and PIV measurement using the models assembled with different strake wings at a = 60°. The free-to-roll results show that the model with whole strake wings(baseline), the model assembled with three strake wings(Case A)and the model assembled with two opposite strake wings(Case C) experience the spinning, while the model assembled with two adjacent strake wings(Case B), the model assembled with one strake wing(Case D) and the model with no strake wing(Case E) trim or slightly vibrate at a certain "×"rolling angle, which mean that the rolling stability can be improved by dismantling certain strake wings. The flow field results from PIV measurement show that the leeward asymmetric vortices are induced by the windward strake wings. The vortices would interact the strake wings and induce crossflow on the downstream fins to degrade the rolling stability of the model. This could be the main reason for the self-induced roll motion of the model at a = 60°. 展开更多
关键词 Cruciform fins high angle of attack PIV Roll motion Strake wing
原文传递
Time delay compensation in lateral-directional flight control systems at high angles of attack 被引量:2
7
作者 Lin SHEN Da HUANG Genxing WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期1-18,共18页
The previous studies of time delay compensation in flight control systems are all based on the conventional aerodynamic derivative model and conducted in longitudinal motions at low angles of attack.In this investigat... The previous studies of time delay compensation in flight control systems are all based on the conventional aerodynamic derivative model and conducted in longitudinal motions at low angles of attack.In this investigation,the effects of time delay on the lateral-directional stability augmentation system in high-a regime are discussed based on theβmodel,which is proposed in our previous work and proved as a more accurate aerodynamic model to reveal the lateraldirectional unsteady aerodynamic characteristics at high angles of attack.Both theβmodel and the quasi-steady model are used for simulating the effects of time delay on the flying qualities in high-a maneuvers.The comparison between the simulation results shows that the flying qualities are much more sensitive to the mismatch of feedback gains than the state errors caused by time delay.Then a typical adaptive controller based on the conventional dynamic derivative model and a gain-prediction compensator based onβmodel are designed to address the time delay in different maneuvers.The simulation results show that the gain-prediction compensator is much simpler and more efficient at high angles of attack.Finally,the gain-prediction compensator is combined with a linearizedβmodel reference adaptive controller to compensate the adverse effects of very large time delay,which exhibits excellent performance when addressing the extreme conditions at high angles of attack. 展开更多
关键词 Adaptive control Flying quality high angles of attack Time delay Yaw-roll coupling
原文传递
Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries 被引量:2
8
作者 Yu-Xin Tong Qing-Hua Zhang Lin Gu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期23-34,共12页
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H... Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed. 展开更多
关键词 scanning transmission electron microscopy high angle annular dark field annular bright field lithium-ion batteries
原文传递
Subsonic impulsively starting flow at a high angle of attack with shock wave and vortex interaction 被引量:1
9
作者 Chenyuan BAI Juan LI Ziniu WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第9期1822-1828,共7页
Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently,a preliminary numerical study f... Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently,a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously. 展开更多
关键词 Advance of stall Compressible vortex high angle of attack Subsonic starting flow Unsteady shock waves
原文传递
Maneuver control at high angle of attack based on real-time optimization of integrated aero-propulsion
10
作者 Juan FANG Qiangang ZHENG +1 位作者 Changpeng CAI Haibo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期173-188,共16页
To reduce the propulsion system installation thrust loss under high angle of attack maneuvering,a control method based on real-time optimization of the integrated aeropropulsion is proposed.Firstly,based on data fitti... To reduce the propulsion system installation thrust loss under high angle of attack maneuvering,a control method based on real-time optimization of the integrated aeropropulsion is proposed.Firstly,based on data fitting and physical principle,an integrated onboard model of propulsion system is established,which can calculate various performance parameters of the propulsion system in real time,and has high accuracy and real-time performance.Secondly,to improve the compatibility of optimization real-time performance and search accuracy,the online optimization control of aero-propulsion system is realized based on an improved trust region algorithm.Finally,by controlling the auxiliary intake valve,a good match between inlet and engine is realized,which solves the problems of intake flow reducing and total pressure recovery coefficient declining,and improves the installation performance of propulsion system.The simulation results indicate that,compared with the conventional independent engine control,the real-time integrated optimization method reduces the installed thrust loss by 3.61%under the design condition,and 4.58%under the off-design condition.Furthermore,the simulation on HIL(Hardware-In-theLoop)platform verifies the real-time performance of integrated optimization method. 展开更多
关键词 high angle of attack Inlet/engine integration Real-time optimization Engine performance Auxiliary intake valve
原文传递
COMPUTATION OF FIELD STRUCTURE AND AERODYNAMIC CHARACTERISTICS OF DELTA WINGS AT HIGH ANGLES OF ATTACK
11
作者 杨立芝 高正红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第6期797-806,共10页
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simu... A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears. 展开更多
关键词 computational method high angle of attack vortex flow
在线阅读 下载PDF
Mechanism of perturbation-combined active control technique for asymmetric vortex flow over slender body at high angle of attack 被引量:1
12
作者 WANG YanKui SHAN JiXiang +3 位作者 TIAN Wei DENG XueYing DONG JinGang TIAN Xiao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第10期2665-2673,共9页
Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is... Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is discussed in this paper,including blowing momentum and circumferential locations of the microblowing hole of 0.5 mm in diameter on nose tip.A new kind of active control technique,named perturbation-combined active control technique,which combines the micro-grain and micro-blowing perturbation,was proposed on the basis of the above.This control technique can not only change the sign of side force of slender body arbitrarily through changing the vortices positions between yaw-left and yaw-right configuration,but also can make the magnitude of side force variable gradually even at bistable state of asymmetric vortex.Finally,the interferential mechanism of the perturbation-combined active control technique has also been concluded from this paper.The tests have been conducted at low speed wind tunnel with subcritical Reynolds number of 1.05×10~5 at angle of attack α=50° in Beihang University,Beijing,China. 展开更多
关键词 asymmetric vortex perturbation-combined active flow control high angle of attack aerodynamics slender body
原文传递
High myopia as a risk factor in primary open angle glaucoma 被引量:13
13
作者 Sheng-Ju Chen Peng Lu +1 位作者 Wen-Fang Zhang Jian-Hua Lu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第6期750-753,共4页
Glaucoma, one of the leading causes of irreversible blindness in the adult population worldwide, is a progressive optic neuropathy. Primary open angle glaucoma (POAG) is the most commonly reported type of glaucoma in ... Glaucoma, one of the leading causes of irreversible blindness in the adult population worldwide, is a progressive optic neuropathy. Primary open angle glaucoma (POAG) is the most commonly reported type of glaucoma in population based prevalence studies worldwide. Elevated intraocular pressure is a well-known major risk factor for POAG. In addition, there is growing evidence that other risk factors like age, gender, race, refractive error, heredity and systemic factors may play a role in glaucoma pathogenesis. Many studies found that high myopia has been associated with POAG, however, direct and convincing evidences are still lacking. The aim of this review is to summarize the evidences implicating high myopia as a risk factor in the pathogenesis of POAG. 展开更多
关键词 high myopia primary open angle glaucoma risk factor
原文传递
Predicting the high-angle-of-attack characteristics of an airfoil for micro/unmanned aerial vehicle applications
14
作者 V.Somashekar L.Vinod 《International Journal of Fluid Engineering》 2025年第2期15-24,共10页
This study investigates the aerodynamic characteristics of a low-Reynolds-number airfoil at high angles of attack(AoA)from 0°to 90°,focusing on their relevance for micro and unmanned aerial vehicle(MAV/UAV)a... This study investigates the aerodynamic characteristics of a low-Reynolds-number airfoil at high angles of attack(AoA)from 0°to 90°,focusing on their relevance for micro and unmanned aerial vehicle(MAV/UAV)applications.Simulations are conducted using the k-ωshear stress transport(SST)turbulence model using ANSYS Fluent software.Among the key findings is that the lift coefficient CL increases from 1.2981 at 0°AoA to a peak of 2.034 at 11°before decreasing to 1.51 at 90°,indicating initial lift improvement followed by a reduction due to potential flow separation or stall.The drag coefficient CD increases from 0.0222 at 0°AoA to a peak of 0.3572 at 12°,and then decreases to 0.0467 at 90°,indicating initially increasing turbulence and separation,followed by stabilization in the flow regime.The lift-to-drag ratio L/D reaches its maximum of 32.334 at 90°AoA,highlighting improved aerodynamic efficiency at higher AoAs despite increased drag.The skin friction coefficient Cf shows a maximum of 0.046918 at the leading edge at 30°AoA and 0.0394262 at the trailing edge at 90°,indicating critical points of frictional drag.Additionally,the turbulence viscosity ratio at the LE peaks at 0.5586 at 30°AoA and drops to 0.004 at 90°,while it increases at the trailing edge,reaching 0.0394262 at 90°,showing heightened turbulence effects at high AoAs.The present numerical study,however,determines the lift coefficient to be 2.00.This yields a maximum percentage variation of 11.5%compared with the value in the literature.These results provide a comprehensive overview of how high-AoA conditions impact aerodynamic performance,offering valuable insights for optimizing airfoil design and improving MAV/UAV efficiency. 展开更多
关键词 micro unmanned aerial vehicle ansys fluent softwareamong low Reynolds number airfoil lift coefficient high angle attack aerodynamic characteristics micro unmanned aerial vehicle mav uav applicationssimulations
在线阅读 下载PDF
Influence of Initial Microstructure on Warm Deformation Processability and Microstructure of an Ultrahigh Carbon Steel 被引量:1
15
作者 Tao WU Yu-wei GAO +3 位作者 Ming-zhi WANG Xiao-pu LI Yu-cheng ZHAO Qin ZOU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第1期52-59,共8页
Various isothermal compression tests are carried out on an ultrahigh carbon steel (1.2% C in mass percent), initially quenched or spheroidized, using a Gleeble-3500 system. The true stress is observed to decrease wi... Various isothermal compression tests are carried out on an ultrahigh carbon steel (1.2% C in mass percent), initially quenched or spheroidized, using a Gleeble-3500 system. The true stress is observed to decrease with increas ing temperature and decreasing strain rate. The true stress of the initially quenched steel is lower than that of the ini- tially spheroidized steel at high deformation temperature (700 ~C) and low deformation strain rate (0. 001 s-1 ). The value of the deformation activation energy (Q) of the initially quenched steel (331.56 kJ/mol) is higher than that of the initially spheroidized steel (297.94 kJ/mol). The initially quenched steel has lower efficiency of power dissipation and better processability than the initially spheroidized steel. The warm compression promotes the fragmentation and the spheroidization of lamellar cementites in the initially quenched steel. The fragmentation of lamellar cementites is the spheroidizing mechanism of the eementites in the initially quenched steel. Results of transmission electron microscope investigation showed that fine grains with high angle boundaries are obtained by deformation of the initially quenched steel. 展开更多
关键词 ultrahigh carbon steel initially quenched steel initially spheroidized steel deformation activation ener- gy high angle boundary
原文传递
Engagement Angle Modeling for Multiple-circle Continuous Machining and Its Application in the Pocket Machining 被引量:1
16
作者 Shixiong WU Wei MA +2 位作者 Haiping BAI Chengyong WANG Yuexian SONG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期256-271,共16页
The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the contro... The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket. 展开更多
关键词 Pocket · Engagement angle · Milling force Circle · high·speed machining
在线阅读 下载PDF
Digital image correlation based high-speed crack tip locatingmethod and its application 被引量:1
17
作者 曹彦彦 马沁巍 郭文婧 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期7-16,共10页
Based on a digital image correlation(DIC)method with the measurements of a high speed crack's displacement and strain fields,a technique to accurately and automatically locate its crack tip has been developed.The c... Based on a digital image correlation(DIC)method with the measurements of a high speed crack's displacement and strain fields,a technique to accurately and automatically locate its crack tip has been developed.The crack tip is identified by finding the abrupt jump on the opening(or dislocation)curve of a point on the trace of the crack propagation,while the opening is measured through a virtual extensometer technique and the abrupt jump is identified by finding the peak on the curve.The method was verified using a specially designed experiment and applied to measure the critical crack tip opening angle of a rock sample.Because the involvement of analytical models has been avoided and then the good performance could be ensured for low resolution speckle images,this technique is expected to be very useful in the quantitative study of high speed cracks in experiments using high speed cameras. 展开更多
关键词 digital image correlation(DIC) high speed crack crack tip virtual extensometer crack tip opening angle
在线阅读 下载PDF
Aerodynamic, Kinematic and Control Coupling Simulation of Aircraft Maneuvering Flight
18
作者 Haohui Tang Shuanghou Deng 《World Journal of Engineering and Technology》 2024年第4期1126-1145,共20页
Aiming at the high angle of attack pull-up and multi-channel roll pull-up coupling problems of high maneuvering aircraft, this paper establishes the flight attitude control rate by means of unsteady flow numerical sol... Aiming at the high angle of attack pull-up and multi-channel roll pull-up coupling problems of high maneuvering aircraft, this paper establishes the flight attitude control rate by means of unsteady flow numerical solution, dynamic unstructured nested mesh assembly method and numerical solution method of flight mechanics equation. On this basis, a virtual flight simulation platform integrating pneumatics, motion and control is established. Based on this virtual flight simulation platform, F-16 aircraft is simulated by high angle of attack pull-up flight mode and multi-channel roll pull-up coupling flight mode. Finally, the influence of rudder on the yaw control channel is investigated. The results show that the numerical virtual flight simulation platform established in this paper has the ability to simulate maneuvering flight of aircraft. 展开更多
关键词 high angle of Attack Pull-Up high Maneuvering Aircraft Flight Attitude Control Rate Dynamic Unstructured Nested Mesh Virtual Flight Simula-tion Platform
在线阅读 下载PDF
INFLUENCE OF NOSE PERTURBATIONS ON BEHAVIORS OF ASYMMETRIC VORTICES OVER SLENDER BODY 被引量:22
19
作者 陈学锐 邓学鉴 +2 位作者 王延奎 刘沛清 顾志福 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第6期581-593,共13页
The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressur... The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressure measurement were conducted at a low speed wind tunnel with subcritical Reynolds number of 1×105 at angle of attack α=50°. The experiment results show that the behaviors and structure of asymmetric vortices over the slender body are mainly controlled by manual perturbation on the nose of body as compared with geometrical minute irregularities on the test model from the machining tolerances. The effect of the perturbation axial location on asymmetric vortices is the strongest if its location is near the model apex. There are four sensitive circumferential locations of manual perturbation at which bistable vortices over the slender body are switched by the perturbation. The flowfield near the reattachment line of lee side is more sensitive to the perturbation, because the saddle point to saddle point topological structure in this reattachment flowfield is unstable. Various types of perturbation do not change the perturbation effect on the behaviors of bistable asymmetric vortices. 展开更多
关键词 asymmetric vortex slender body of revolution bistable flow high angle of attack aerodynamics
在线阅读 下载PDF
Recent progress on the study of asymmetric vortex flow over slender bodies 被引量:11
20
作者 X.Y.Deng W.Tian +1 位作者 B.F.Ma Y.K.Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第5期475-487,共13页
The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. Howe... The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques- tions that deserve answers are proposed in the concluding remarks. 展开更多
关键词 high angle of attack aerodynamics Asymmetric vortex Tip perturbation Slender body Reynolds number effect
暂未订购
上一页 1 2 下一页 到第
使用帮助 返回顶部