The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in...Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.展开更多
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature...This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.展开更多
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe...CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally c...High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.展开更多
The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related...The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related microstructural evolutions such as the carbide precipitate and grain of a laser-welded Ni-based alloy were experimentally and numerically investigated at different temperatures(20,300,500,800℃).The results show that at room temperature,the strength of the Base Material(BM)was slightly smaller,with a difference of less than 1%,than the Welded Material(WM),which can be attributed to the more uniformly distributed needle-shaped carbide precipitates in the WM than those nonuniformly coarser spherical ones in the BM.While at 300℃ and 500℃,the strength of WM decreased more obviously compared with that of BM due to the more apparent growth of grain:13.52%loss in yield strength in WM alloys as compared with BM alloys at 300℃,and 16.57% at 500℃.At 800℃,the strength of BM and WM both decreased to a similar level due to Dynamic Recrystallization(DRX).However,a much higher elongation was observed for the BM than WM(less than 50%of BM),which can be attributed to the enhanced dislocation accumulation capability of the large spherical carbides along grain boundaries on the fracture surface in BM.Furthermore,a unified model considering the welding effects on both microstructures(dislocation,carbides,and grain)and mechanical properties evolutions at different temperatures was developed and validated.Based on this model,the key temperature ranges(20–600℃)where apparent weakening of strength and uniform plasticity occurs for welded structures were identified,providing a direct guidance for potential structure and process design.展开更多
High-nickel cathode LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)could enable lithium-ion batteries(LIBs)with high energy density.However,excessive decomposition of the electrolyte would happen in the high operating voltage...High-nickel cathode LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)could enable lithium-ion batteries(LIBs)with high energy density.However,excessive decomposition of the electrolyte would happen in the high operating voltage range.In addition,the utilization of flammable organic solvents would increase safety risks in the high temperature environment.Herein,an electrolyte consisting of flame-retardant solvents with lower highest occupied molecular orbital(HOMO)level and LiDFOB salt is proposed to address above two issues.As a result,a thin and robust cathode-electrolyte interface containing rich LiF and Li-B-O compounds is formed on the cathode to effectively suppress electrolyte decomposition in the high operating voltage.The NCM811||Li cell paired with this designed electrolyte possesses a capacity retention of 72%after 300 cycles at 55℃.This work provides insights into developing electrolyte for stable high-nickel cathode operated in the high temperature.展开更多
Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal ...Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.展开更多
Within the framework of carbon neutrality,lithium-ion batteries(LIBs)are progressively booming along with the growing utilization of green and clean energy.However,the extensive application of LIBs with limited lifesp...Within the framework of carbon neutrality,lithium-ion batteries(LIBs)are progressively booming along with the growing utilization of green and clean energy.However,the extensive application of LIBs with limited lifespan has brought about a significant recycling dilemma.The traditional hydrometallurgical or pyrometallurgical strategies are not capable to maximize the output value of spent LIBs and minimize the potential environmental hazards.Herein,to alternate the tedious and polluting treatment processes,we propose a high-temperature molten-salt strategy to directly regenerate spent cathodes of LIBs,which can also overcome the barrier of the incomplete defects'restoration with previous low-temperature molten salts.The high-energy and stable medium environment ensures a more thorough and efficient relithiation reaction,and simultaneously provides sufficient driving force for atomic rearrangement and grains secondary growth.In consequence,the regenerated ternary cathode(R-NCM)exhibits significantly enhanced structural stability that effectively suppresses the occurrence of cracks and harmful side reactions.The R-NCM delivers excellent cycling stability,retaining 81.2%of its capacity after 200 cycles at 1 C.This technique further optimizes the traditional eutectic molten-salt approach,broadening its applicability and improving regenerated cathode performance across a wider range of conditions.展开更多
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff...Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.展开更多
Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volum...Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.展开更多
Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperature...Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.展开更多
Summer high temperatures have severely impaired the growth of herbaceous peony(Paeonia lactiflora Pall.)in East China.While compound fertilizer application enhances soil fertility and promotes plant growth,its efficac...Summer high temperatures have severely impaired the growth of herbaceous peony(Paeonia lactiflora Pall.)in East China.While compound fertilizer application enhances soil fertility and promotes plant growth,its efficacy in maintaining optimal plant performance under summer heat stress remains poorly understood.This study investigated the effects of compound fertilizer application on herbaceous peony growth during summer thermal stress.Results demonstrated that compound fertilizer supplementation significantly improved plant growth under elevated temperatures,manifesting enhanced phenotypic characteristics,elevated antioxidant enzyme activities,and increased nutrient accumulation.Compared to untreated controls,fertilized plants exhibited three key responses:(1)increased chlorophyll content coupled with reduced relative conductivity,malondialdehyde levels,and reactive oxygen species(ROS)accumulation;(2)upregulated activities of four critical antioxidant enzymes and augmented nitrogen,phosphorus,and potassium assimilation,collectively enhancing photosynthetic efficiency;and(3)stimulated expression of chlorophyll biosynthesis-related genes alongside suppressed transcription of chlorophyll degradation-associated genes.These findings establish a theoretical framework for optimizing compound fertilizer strategies to mitigate summer heat stress in herbaceous peony cultivation across East China.展开更多
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t...The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].展开更多
Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate fail...Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.展开更多
Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte los...Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.展开更多
Tin sulfide(SnS)is a promising non-toxic thermoelectric(TE)material to replace SnSe(Se is toxic),due to its similar structure and low thermal conductivity(k)comparable to SnSe.However,the poor electrical conductivity(...Tin sulfide(SnS)is a promising non-toxic thermoelectric(TE)material to replace SnSe(Se is toxic),due to its similar structure and low thermal conductivity(k)comparable to SnSe.However,the poor electrical conductivity(s)of SnS results in lower TE performance.In this work,high pressure was utilized to regulate the electronic structure,thereby mediating the conflict of electron and phonon transport to optimize the TE performance.In situ measurements of thermoelectric properties for SnS under high pressure and high temperature revealed that although the Seebeck coefficient(S)and k slightly decrease with increasing pressure,the s dramatically increases with increasing pressure,finally increasing the dimensionless figure of merit(ZT).The s increases from 2135 S·m^(-1)to 83549 S·m^(-1)as the pressure increases from 1 GPa to 5 GPa at 325 K,representing an increase of an order of magnitude.The high s of SnS leads to an increase in the PF to 1436μW·m^(-1)·K^(-2)at 5 GPa and 652 K.The maximum ZT value of 0.77 at 5 GPa and 652 K was obtained,which is 4 times the maximum ZT under ambient pressure and is comparable to that of doped SnS.The increase in s is due to the fact that pressure modulates the band structure of SnS by narrowing the band gap from 1.013 eV to 0.712 eV.This study presents a valuable guide for searching new high TE performance materials using high pressure.展开更多
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert...(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金supported by NSFC(Grant No.52202265,52302004,52472010,62434010)the Taishan Scholars Program of Shandong Province(tsqn202306330)+1 种基金Shenzhen Science and Technology Program(JCYJ20230807094009018)Xiaomi Young Talents Program(2023XM06).
文摘Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205140,52175129)the Outstanding Youth Foundation of Hunan Province(Grant No.2023JJ20041)the Science and Technology Innovation Program of Hunan Province(2023RC3241).
文摘This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.
基金project was supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(No.SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China(52130401)+1 种基金National Natural Science Foundation of China(52104055,52374058)Shandong Provincial Natural Science Foundation,China(ZR2021ME171,ZR2024YQ043)。
文摘CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金supported by the National Natural Science Foundation of China(Grant No.52207031)the National Key R&D Program of China(Grant No.2020YFA0710500)。
文摘High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.
基金co-supported by the financial support from the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-L-1012,YWF-22-L-1017)the National Natural Science Foundation of China(No.52005020)。
文摘The performance of welded Ni-based superalloys at high temperatures is essential to be evaluated due to their particular service environment for aero-engines and high-speed aircrafts.The tensile properties and related microstructural evolutions such as the carbide precipitate and grain of a laser-welded Ni-based alloy were experimentally and numerically investigated at different temperatures(20,300,500,800℃).The results show that at room temperature,the strength of the Base Material(BM)was slightly smaller,with a difference of less than 1%,than the Welded Material(WM),which can be attributed to the more uniformly distributed needle-shaped carbide precipitates in the WM than those nonuniformly coarser spherical ones in the BM.While at 300℃ and 500℃,the strength of WM decreased more obviously compared with that of BM due to the more apparent growth of grain:13.52%loss in yield strength in WM alloys as compared with BM alloys at 300℃,and 16.57% at 500℃.At 800℃,the strength of BM and WM both decreased to a similar level due to Dynamic Recrystallization(DRX).However,a much higher elongation was observed for the BM than WM(less than 50%of BM),which can be attributed to the enhanced dislocation accumulation capability of the large spherical carbides along grain boundaries on the fracture surface in BM.Furthermore,a unified model considering the welding effects on both microstructures(dislocation,carbides,and grain)and mechanical properties evolutions at different temperatures was developed and validated.Based on this model,the key temperature ranges(20–600℃)where apparent weakening of strength and uniform plasticity occurs for welded structures were identified,providing a direct guidance for potential structure and process design.
基金supported by the National Key Research and Development Program of China(2022YFB3803400)。
文摘High-nickel cathode LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)could enable lithium-ion batteries(LIBs)with high energy density.However,excessive decomposition of the electrolyte would happen in the high operating voltage range.In addition,the utilization of flammable organic solvents would increase safety risks in the high temperature environment.Herein,an electrolyte consisting of flame-retardant solvents with lower highest occupied molecular orbital(HOMO)level and LiDFOB salt is proposed to address above two issues.As a result,a thin and robust cathode-electrolyte interface containing rich LiF and Li-B-O compounds is formed on the cathode to effectively suppress electrolyte decomposition in the high operating voltage.The NCM811||Li cell paired with this designed electrolyte possesses a capacity retention of 72%after 300 cycles at 55℃.This work provides insights into developing electrolyte for stable high-nickel cathode operated in the high temperature.
基金supported by the National Natural Science Foundation of China(52172265)Excellent Youth Science Foundation of Hunan Province(2022JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(2022RC1074)Central South University Innovation-Driven Research Program(2023CXQD010).
文摘Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.
基金support by National Natural Science Foundation of China(22379166)Natural Science Foundation for Distinguished Young Scholars of Hunan Province(2022JJ10089)Central South University Innovation-Driven Research Programme(2023CXQD034).
文摘Within the framework of carbon neutrality,lithium-ion batteries(LIBs)are progressively booming along with the growing utilization of green and clean energy.However,the extensive application of LIBs with limited lifespan has brought about a significant recycling dilemma.The traditional hydrometallurgical or pyrometallurgical strategies are not capable to maximize the output value of spent LIBs and minimize the potential environmental hazards.Herein,to alternate the tedious and polluting treatment processes,we propose a high-temperature molten-salt strategy to directly regenerate spent cathodes of LIBs,which can also overcome the barrier of the incomplete defects'restoration with previous low-temperature molten salts.The high-energy and stable medium environment ensures a more thorough and efficient relithiation reaction,and simultaneously provides sufficient driving force for atomic rearrangement and grains secondary growth.In consequence,the regenerated ternary cathode(R-NCM)exhibits significantly enhanced structural stability that effectively suppresses the occurrence of cracks and harmful side reactions.The R-NCM delivers excellent cycling stability,retaining 81.2%of its capacity after 200 cycles at 1 C.This technique further optimizes the traditional eutectic molten-salt approach,broadening its applicability and improving regenerated cathode performance across a wider range of conditions.
基金supported by the Chongqing Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0333)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202401205)+1 种基金Chongqing Three Gorges University Graduate Research and Innovation Project Funding(No.YJSKY24045)Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(No.SXAPGC24YB14,No.SXAPGC24YB03,No.SXAPGC24YB12)。
文摘Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.
基金supported by the National Key Research and Development Program of China(2022YFB3706600 and 2023YFA1406200)the National Natural Science Founda-tion of China(42272041,52302043,12304015,41902034,and 12011530063)+1 种基金the Jilin University High-level Innovation Team Foundation,China(2021TD-05)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(2021FGWCXNLJSKJ01).
文摘Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.
基金Projects(41702320,52104125)supported by the National Natural Science Foundation of ChinaProject(ZR2021MD005)+2 种基金supported by the Natural Science Foundation of Shandong Province,ChinaProject(TMduracon2022002)supported by the Engineering Research Center of Marine Environmental Concrete Technology,Ministry of Education,China。
文摘Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.
基金supported by the Jiangsu Province Seed Industry Revitalization Unveiled Project(JBGS(2021)020)Forestry Science,Technology Innovation and Promotion Project of Jiangsu Province(LYKJ[2021]01)National Forest and Grass Science and Technology Innovation and Development Research Project(2023132012).
文摘Summer high temperatures have severely impaired the growth of herbaceous peony(Paeonia lactiflora Pall.)in East China.While compound fertilizer application enhances soil fertility and promotes plant growth,its efficacy in maintaining optimal plant performance under summer heat stress remains poorly understood.This study investigated the effects of compound fertilizer application on herbaceous peony growth during summer thermal stress.Results demonstrated that compound fertilizer supplementation significantly improved plant growth under elevated temperatures,manifesting enhanced phenotypic characteristics,elevated antioxidant enzyme activities,and increased nutrient accumulation.Compared to untreated controls,fertilized plants exhibited three key responses:(1)increased chlorophyll content coupled with reduced relative conductivity,malondialdehyde levels,and reactive oxygen species(ROS)accumulation;(2)upregulated activities of four critical antioxidant enzymes and augmented nitrogen,phosphorus,and potassium assimilation,collectively enhancing photosynthetic efficiency;and(3)stimulated expression of chlorophyll biosynthesis-related genes alongside suppressed transcription of chlorophyll degradation-associated genes.These findings establish a theoretical framework for optimizing compound fertilizer strategies to mitigate summer heat stress in herbaceous peony cultivation across East China.
基金supported by the National Natural Science Foundation of China(Nos.52201207 and 52271169)the Fundamental Research Funds for the Central University(No.3072024LJ1002).
文摘The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].
基金Project(BZ2024023)supported by the Jiangsu Province International Collaboration Program-Key National Industrial Technology Research and Development Cooperation,China。
文摘Dynamic compression experiments were conducted on red sandstone utilizing a split Hopkinson pressure bar(SHPB)to study the loading rate and high temperatures on their mechanically deformed properties and ultimate failure modes,and to analyze the correlation between the strain rate,temperature,peak strength,and ultimate failure modes.The results show that the mass decreases with the increase of treatment temperature,and the pattern of the stress−strain curves is not impacted by the increase of impact velocity.Under a fixed temperature,the higher the impact velocity,the higher the strain rate and dynamical compression strength,indicating a strain rate hardening effect for red sandstone.With an increasing treatment temperature,the strain rate gradually increases when the impact loading remains unchanged,suggesting a rise in the deformability of red sandstone under high-temperature environment.Raise in both impact velocity and treatment temperature leads to an intensification of the damage features of the red sandstone.Similarly,higher strain rates lead to the intensification of the final damage mode of red sandstone regardless of the change in treatment temperature.Moreover,a dynamic damage constitutive model that considers the impacts of strain rate and temperature is proposed based on experimental results.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22179130,22379143,22479145)。
文摘Liquid phosphoric acid(PA),as the proton carrier for high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs),presents challenges such as catalyst poisoning,high gas transport resistance and electrolyte loss.These issues significantly impede the performance and durability of HT-PEMFCs,thereby limiting their potential for further application.In this study,poly(2,3,5,6-tetrafluorostylene-4-phosphonic acid)(PWN)with intrinsic proton conduction ability was employed as catalyst layer binder to reveal the impacts of the ionomer's molecular structure on mass transport within the catalyst layer.Our findings demonstrated that increasing the phosphorylation degree of PWN could enhance both pore formation at the catalyst layer and electrode acidophilic capability while improving proton conduction ability and reducing cells'internal resistance.However,adverse effects included increased local oxygen transport resistance and decreased catalyst utilization resulting from electrode acidophilic capability.This research offers valuable insights for the relationships between micro-scale molecule structure,mesoscale electrode architecture,and membrane electrode assembly design in HT-PEMFCs.
基金support from the Program for the Development of Science and Technology of Jilin Province(Grant No.SKL202402004)the Jilin Province Major Science and Technology Program(Grant No.20240211002GX)the Open Research Fund of the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education(Jilin Normal University,202405).
文摘Tin sulfide(SnS)is a promising non-toxic thermoelectric(TE)material to replace SnSe(Se is toxic),due to its similar structure and low thermal conductivity(k)comparable to SnSe.However,the poor electrical conductivity(s)of SnS results in lower TE performance.In this work,high pressure was utilized to regulate the electronic structure,thereby mediating the conflict of electron and phonon transport to optimize the TE performance.In situ measurements of thermoelectric properties for SnS under high pressure and high temperature revealed that although the Seebeck coefficient(S)and k slightly decrease with increasing pressure,the s dramatically increases with increasing pressure,finally increasing the dimensionless figure of merit(ZT).The s increases from 2135 S·m^(-1)to 83549 S·m^(-1)as the pressure increases from 1 GPa to 5 GPa at 325 K,representing an increase of an order of magnitude.The high s of SnS leads to an increase in the PF to 1436μW·m^(-1)·K^(-2)at 5 GPa and 652 K.The maximum ZT value of 0.77 at 5 GPa and 652 K was obtained,which is 4 times the maximum ZT under ambient pressure and is comparable to that of doped SnS.The increase in s is due to the fact that pressure modulates the band structure of SnS by narrowing the band gap from 1.013 eV to 0.712 eV.This study presents a valuable guide for searching new high TE performance materials using high pressure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.