With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a signif...With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a significant technical challenge and has become a major bottleneck in machine development. The design of such machines is inherently constrained by the strong coupling among electromagnetic(EM), thermal, and mechanical domains, while systematic analyses of these challenges remain insufficient. This paper clarifies the interdependent relationships among these domains during the machine design process. It reviews key enabling strategies, including machine design based on advanced electromagnetic theory, innovative thermal management techniques, cutting-edge material advancements, and state-of-the-art manufacturing technologies, that collectively enhance the performance and feasibility of high power density machines(HPDMs). The insights provided aim to support the development of nextgeneration machine systems with higher power density, compact size, and robust, sustainable performance across a wide range of industrial and technological applications.展开更多
The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high ...The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to ...The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.展开更多
A series of high phase purity blue light excitable yellow-emitting LaSiN:xCephosphors were synthesized by the high temperature solid state reactions method. The structure and luminescent properties were investigated. ...A series of high phase purity blue light excitable yellow-emitting LaSiN:xCephosphors were synthesized by the high temperature solid state reactions method. The structure and luminescent properties were investigated. The phase structure was studied by means of X-ray diffraction, structures refinements and energy dispersive X-ray spectroscopy. The phosphors effectively excited by the light of450 nm and show intense yellow emission at 535 nm with FWHM of 115 nm corresponding to the5 d →~2 Fand 5 d →~2 Ftransitions of Ce. In addition,the optimized LaSiN:0.14 Ceexhibits a weak thermal quenching, which remains 98.2% of the initial emission intensity when heated to 200 ℃,the thermal quenching properties exhibit a modest decline when the temperature returned to room temperature. The above results indicate that LaSiN:Cecan be regarded as a high promising phosphor for applications in high power white-light LED.展开更多
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati...In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.展开更多
As the fourth-generation light source,solid-state lighting has developed rapidly in the past 30 years due to its advantages of high efficiency and environmental protection.It is widely used in various scenes such as a...As the fourth-generation light source,solid-state lighting has developed rapidly in the past 30 years due to its advantages of high efficiency and environmental protection.It is widely used in various scenes such as automobile headlights,projection displays,industrial production,and remote lighting.High-power,high-brightness white light-emitting diodes(LEDs)and laser diodes(LDs)technology put forward new requirements for the service stability of color conversion materials.Garnet phosphor ceramics have emerged with their unique advantages of withstanding high power excitation density and the flexibly tunable spectrum.In this article,the research progress of garnet based phosphor ceramics for high-power solid-state lighting was comprehensively reviewed.Firstly,the band gap and coordination environment regulations of luminescence centers of garnet phosphor were summarized.Secondly,the improvement of luminous efficacy via defects regulation was discussed.Thirdly,the relationship between the geometric design and the lighting performance was elucidated.Fourthly,the characterization methods of phosphor ceramics for laser lighting were introduced and illustrated.Finally,the development trend of garnet phosphor ceramics in solid state lighting and display was prospected.展开更多
In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic win...In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.展开更多
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the depo...This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.展开更多
A theoretical model of phase change heat sink was established in terms of thermal resistance network. The influence of different parameters on the thermal resistance was analyzed and the crucial impact factors were de...A theoretical model of phase change heat sink was established in terms of thermal resistance network. The influence of different parameters on the thermal resistance was analyzed and the crucial impact factors were determined. Subsequently, the forming methods including ploughing-extrusion and stamping method of boiling enhancement structure at evaporation surface were investigated, upon which three-dimensional microgroove structure was fabricated to improve the efficiency of evaporation. Moreover, the crucial parameters related to the fabrication of miniaturized phase change heat sink were optimized. The heat transfer performance of the heat sink was tested. Results show that the developed phase change heat sink has excellent heat transfer performance and is suitable for high power LED applications.展开更多
Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with it...Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.展开更多
The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficie...The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.展开更多
We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, correspondin...We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.展开更多
980 nm InGaAs/GaAs separate confinement heterostructure (SCH) strained quantum well (QW) laser with non-absorbing facets was fabricated by using thermal treatment. Microchannel coolers with a five-layer thin oxyge...980 nm InGaAs/GaAs separate confinement heterostructure (SCH) strained quantum well (QW) laser with non-absorbing facets was fabricated by using thermal treatment. Microchannel coolers with a five-layer thin oxygen-free copper plate structure were designed and fabricated through thermal bonding in hydrogen ambient. The highest CW (continuous wave) output power of 200 W for 5-bar arrays packaged by microchannel coolers was presented.展开更多
In this paper,high-power LED with many integrated chips is used as thermal resistance analysis research object, and we do thermal resistance testing technology research on it. We put forward the thermocouple point con...In this paper,high-power LED with many integrated chips is used as thermal resistance analysis research object, and we do thermal resistance testing technology research on it. We put forward the thermocouple point contact test method. According to the principle that LED forward voltage changes with temperature,LED heat sink to surface temperature distribution is studied directly in the test,and then we analyze the thermal resistance of high-power LED with many integrated chips when its secondary packaging is introduced. This method makes the measurement of thermal resistance of LED more rapid and convenient. It provides an effective assessment method for the analysis of high power LED device design and engineering application.展开更多
The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap swi...The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.展开更多
Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different wave...Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.展开更多
Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-spe...Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.展开更多
Faced with the challenge of high energy ablation problems, especially for laser ablation, effective energy dissipation protective materials fabricate by efficient preparation method is a feasible solution. The Ni-grap...Faced with the challenge of high energy ablation problems, especially for laser ablation, effective energy dissipation protective materials fabricate by efficient preparation method is a feasible solution. The Ni-graphite/Si O2 coatings with different Ni content were prepared by plasma spraying method with optimized plasma spraying parameters. All coatings are pure without oxidation and dense. Their ablation behaviors were investigated by high power continuous wave laser. The results indicate that the Ni-graphite/Si O2 coating with appropriate Ni content could realize the purpose of energy consumption by endothermal reaction of graphite/Si O2 and reflection improvement. High Ni content will block the occurrence of endothermal reaction of graphite/Si O2 and increase the heat diffusion to interior part of coating, which can make the ablation situation of coating more serious.展开更多
The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectr...The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).展开更多
基金supported in part by the National Key Research and Development Program of China (No. 2020YFA0710500)in part by the National Natural Science Foundation of China (NSFC)(No. 52277066)in part by the State Key Laboratory of Electrical Insulation and Power Equipment Foundation (No. EIPE23131)。
文摘With the continued advancement of deep electrification across various industries, the demand for higher power density in electric machines is steadily increasing. However, realizing high power density remains a significant technical challenge and has become a major bottleneck in machine development. The design of such machines is inherently constrained by the strong coupling among electromagnetic(EM), thermal, and mechanical domains, while systematic analyses of these challenges remain insufficient. This paper clarifies the interdependent relationships among these domains during the machine design process. It reviews key enabling strategies, including machine design based on advanced electromagnetic theory, innovative thermal management techniques, cutting-edge material advancements, and state-of-the-art manufacturing technologies, that collectively enhance the performance and feasibility of high power density machines(HPDMs). The insights provided aim to support the development of nextgeneration machine systems with higher power density, compact size, and robust, sustainable performance across a wide range of industrial and technological applications.
文摘The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339900)the National Natural Science Foundation of China(Grant No.60776034)
文摘The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.
基金Project supported by the National Basic Research Program of China(2014CB643801)
文摘A series of high phase purity blue light excitable yellow-emitting LaSiN:xCephosphors were synthesized by the high temperature solid state reactions method. The structure and luminescent properties were investigated. The phase structure was studied by means of X-ray diffraction, structures refinements and energy dispersive X-ray spectroscopy. The phosphors effectively excited by the light of450 nm and show intense yellow emission at 535 nm with FWHM of 115 nm corresponding to the5 d →~2 Fand 5 d →~2 Ftransitions of Ce. In addition,the optimized LaSiN:0.14 Ceexhibits a weak thermal quenching, which remains 98.2% of the initial emission intensity when heated to 200 ℃,the thermal quenching properties exhibit a modest decline when the temperature returned to room temperature. The above results indicate that LaSiN:Cecan be regarded as a high promising phosphor for applications in high power white-light LED.
基金supported by the National Basic Research Program of China(Grant No.2014CB339900)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and TechnologyChina Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.
基金This work was financially supported from the National Key Re-search and Development Program of China(No.2021YFB3501700)the National Natural Science Foundation of China(Nos.52202135,61975070,51902143 and 61971207)+7 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Key Research and Development Project of Jiangsu Province(Nos.BE2021040 and BE2019033)the Natural Science Foundation of Jiangsu Province(Nos.BK20191467 and BK20221226)the Postgrad-uate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2568)the International S&T Cooperation Program of Jiangsu Province(Nos.BZ2019063,BZ2020045 and BZ2020030)the Natural Science Foundation of the Jiangsu Higher Education In-stitutes of China(Nos.19KJB430018 and 20KJA430003)the Special Project for Technology Innovation of Xuzhou City(Nos.KC19250,KC20201,KC20244 and KC21379)Open Project of State Key Laboratory of Advanced Materials and Electronic Components(No.FHR-JS-202011017).The authors would like to show great appreci-ation to Prof.Ole Bjarlin Jensen from the Technical University of Denmark for his long-term support and guidance on diode laser-related knowledge and technique.
文摘As the fourth-generation light source,solid-state lighting has developed rapidly in the past 30 years due to its advantages of high efficiency and environmental protection.It is widely used in various scenes such as automobile headlights,projection displays,industrial production,and remote lighting.High-power,high-brightness white light-emitting diodes(LEDs)and laser diodes(LDs)technology put forward new requirements for the service stability of color conversion materials.Garnet phosphor ceramics have emerged with their unique advantages of withstanding high power excitation density and the flexibly tunable spectrum.In this article,the research progress of garnet based phosphor ceramics for high-power solid-state lighting was comprehensively reviewed.Firstly,the band gap and coordination environment regulations of luminescence centers of garnet phosphor were summarized.Secondly,the improvement of luminous efficacy via defects regulation was discussed.Thirdly,the relationship between the geometric design and the lighting performance was elucidated.Fourthly,the characterization methods of phosphor ceramics for laser lighting were introduced and illustrated.Finally,the development trend of garnet phosphor ceramics in solid state lighting and display was prospected.
文摘In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.
文摘This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.
基金Projects(51575115,51775122) supported by the National Natural Science Foundation of China
文摘A theoretical model of phase change heat sink was established in terms of thermal resistance network. The influence of different parameters on the thermal resistance was analyzed and the crucial impact factors were determined. Subsequently, the forming methods including ploughing-extrusion and stamping method of boiling enhancement structure at evaporation surface were investigated, upon which three-dimensional microgroove structure was fabricated to improve the efficiency of evaporation. Moreover, the crucial parameters related to the fabrication of miniaturized phase change heat sink were optimized. The heat transfer performance of the heat sink was tested. Results show that the developed phase change heat sink has excellent heat transfer performance and is suitable for high power LED applications.
基金The"863"Project of National Ministry of Science and Technology(2006AA03A175)
文摘Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.
基金supported by the National Science Foundation under Grant No.1650470,GRAPES I/UCRC program。
文摘The power and voltage levels of renewable energy resources is growing with the evolution of the power electronics and switching module technologies.For that,the need for the development of a compact and highly efficient solid-state transformer is becoming a critical task in-order to integrate the current AC grid with the new renewable energy systems.The objective of this paper is to present the design,implementation,and testing of a compact multi-port solid-state transformer for microgrid integration applications.The proposed system has a four-port transformer and four converters connected to the ports.The transformer has four windings integrated on a single common core.Thus,it can integrate different renewable energy resources and energy storage systems.Each port has a rated power of 25 kW,and the switching frequency is pushed to 50 k Hz.The ports are chosen to represent a realistic industrial microgrid model consisting of grid,energy storage system,photovoltaic system,and load.The grid port is designed to operate at 4.16 k VAC corresponding to 7.2 kV DC bus voltage,while the other three ports operate at 500 VDC.Moreover,the grid,energy storage and photovoltaic ports are active ports with dual active bridge topologies,while the load port is a passive port with full bridge rectifier one.The proposed design is first validated with simulation results,and then the proposed transformer is implemented and tested.Experimental results show that the designed system is suitable for 4.16 k VAC medium voltage grid integration.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the National Natural Science Foundation of China for Director Fund of WNLO
文摘We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.
文摘980 nm InGaAs/GaAs separate confinement heterostructure (SCH) strained quantum well (QW) laser with non-absorbing facets was fabricated by using thermal treatment. Microchannel coolers with a five-layer thin oxygen-free copper plate structure were designed and fabricated through thermal bonding in hydrogen ambient. The highest CW (continuous wave) output power of 200 W for 5-bar arrays packaged by microchannel coolers was presented.
基金Sponsored by the Heilongjiang Provincial Project(Grant No.12511121)the Harbin City Innovation Talent Project(Grant No.2011RFXXG019)the National Science and Technology Support Project(Grant No.2012BAH28F02)
文摘In this paper,high-power LED with many integrated chips is used as thermal resistance analysis research object, and we do thermal resistance testing technology research on it. We put forward the thermocouple point contact test method. According to the principle that LED forward voltage changes with temperature,LED heat sink to surface temperature distribution is studied directly in the test,and then we analyze the thermal resistance of high-power LED with many integrated chips when its secondary packaging is introduced. This method makes the measurement of thermal resistance of LED more rapid and convenient. It provides an effective assessment method for the analysis of high power LED device design and engineering application.
文摘The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274046 and 61474111the National Basic Research Program of China under Grant No 2013AA014202
文摘Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.
文摘Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.
基金financially supported by the National Natural Science Foundation of China(No.51302013)。
文摘Faced with the challenge of high energy ablation problems, especially for laser ablation, effective energy dissipation protective materials fabricate by efficient preparation method is a feasible solution. The Ni-graphite/Si O2 coatings with different Ni content were prepared by plasma spraying method with optimized plasma spraying parameters. All coatings are pure without oxidation and dense. Their ablation behaviors were investigated by high power continuous wave laser. The results indicate that the Ni-graphite/Si O2 coating with appropriate Ni content could realize the purpose of energy consumption by endothermal reaction of graphite/Si O2 and reflection improvement. High Ni content will block the occurrence of endothermal reaction of graphite/Si O2 and increase the heat diffusion to interior part of coating, which can make the ablation situation of coating more serious.
文摘The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).