期刊文献+
共找到562,921篇文章
< 1 2 250 >
每页显示 20 50 100
High-Entropy Materials:A New Paradigm in the Design of Advanced Batteries
1
作者 Yangmei Xin Minmin Zhu +1 位作者 Haizhong Zhang Xinghui Wang 《Nano-Micro Letters》 2026年第1期1-52,共52页
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ... High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies. 展开更多
关键词 high entropy alloys high entropy oxides high entropy MXenes high entropy battery materials Machine learning
在线阅读 下载PDF
Prioritized Na^(+)Adsorption-Driven Cationic Electrostatic Repulsion Enables Highly Reversible Zinc Anodes at Low Temperatures
2
作者 Guanchong Mao Pan Xu +4 位作者 Xin Liu Xingyu Zhao Zexiang Shen Dongliang Chao Minghua Chen 《Nano-Micro Letters》 2026年第2期306-319,共14页
Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Alth... Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments. 展开更多
关键词 Low-temperature resistant Organic-free additive Aqueous batteries high stability
在线阅读 下载PDF
Cognitive behavioral therapy enhances psychological and physiological outcomes in high-altitude respiratory patients
3
作者 De-Feng Meng Dong-You Zhang +3 位作者 Fan Yang Peng-Li Meng Ting-Ting Wen Yu-Zhao Wang 《World Journal of Psychiatry》 2026年第1期212-220,共9页
BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and of... BACKGROUND Due to the dry and cold climate,the obvious temperature difference between day and night,and the low oxygen content of the air in the plateau area,people are prone to upper respiratory tract diseases,and often the condition is prolonged,and the patients are prone to anxiety and uneasiness,which may be related to the harshness of the plateau environment,somatic discomfort due to the lack of oxygen,anxiety about the disease,and other factors.AIM To investigate the effects of cognitive behavioral therapy(CBT)on anxiety,sleep disorders,and hypoxia tolerance in patients with high-altitude respiratory diseases.METHODS A total of 2337 patients with high-altitude-related respiratory diseases treated at our hospital between November 2023 and January 2024 were selected as the study subjects.The subjects’pre-high-altitude residential altitude was approximately 1700 meters.They were divided into two groups.Both groups were given symptomatic treatment,and the control group implemented conventional nursing intervention,while the research group simultaneously conducted CBT intervention;assessed the degree of health knowledge of the two groups,and applied the Hamilton Anxiety Scale and the Pittsburgh Sleep Quality Index to assess the anxiety and sleep quality of the patients before and after the intervention,respectively.It also observed the length and efficiency of sleep,and detected the level of serum hypoxia inducible factor-1α,erythropoietin(EPO)and clinical intervention before and after intervention.EPO levels,and investigated satisfaction with the clinical intervention.RESULTS The rate of excellent health knowledge in the intervention group was 93.64%,which was higher than that in the control group(74.23%;P<0.05).Before the intervention,there was no significant difference in Hamilton Anxiety Scale and Pittsburgh Sleep Quality Index scores between the two groups(P>0.05),and after the intervention,the scores of the study group were significantly lower than those of the control group(P<0.05).There was no significant difference in sleep duration and sleep efficiency between the groups before the intervention(P>0.05),and after the intervention,the scores of the study group were significantly larger than those of the control group(P<0.05).There was no significant difference in serum hypoxia inducible factor-1αand EPO between the two groups before intervention(P>0.05),and both research groups were significantly lower than the control group after intervention(P<0.05).According to the questionnaire survey,the intervention satisfaction of the study group was 95.53%,which was higher than that of the control group(80.14%;P<0.05).CONCLUSION The CBT intervention in the treatment of patients with high-altitude-related respiratory diseases helps improve patients'health knowledge,relieve anxiety,improve sleep quality and hypoxia tolerance,and improve nursing satisfaction. 展开更多
关键词 Cognitive behavioral therapy high altitude respiratory disease ANXIETY Sleep quality Hypoxia tolerance
暂未订购
A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption
4
作者 Wenhao Wang Xiaolin Lan +6 位作者 Haoquan Hao Jingxiang Liu Yong Shuai Qinghe Jing Shouqing Yan Jie Guo Zhijiang Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期347-356,共10页
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi... The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers. 展开更多
关键词 LIGNITE waste silicon powder SiC nanowires electromagnetic wave absorption high value-added
在线阅读 下载PDF
Tracking a High-Tech Transition--How technology is powering Guangdong’s manufacturing transformation
5
作者 HU FAN 《ChinAfrica》 2026年第1期30-32,共3页
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w... The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot. 展开更多
关键词 othello kitchenware museum TECHNOLOGY industrial strength high tech transition guangdong manufacturing transformation
原文传递
Lifestyle behaviors,serum metabolites and high myopia:Mendelian randomization and mediation analysis
6
作者 Nian-En Liu Xiao-Tong Xu Xiao-Bing Yu 《International Journal of Ophthalmology(English edition)》 2026年第1期140-148,共9页
AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analy... AIM:To explore the causal relationship between several possible behavioral factors and high myopia(HM)using multivariable Mendelian randomization(MVMR)approach and to find the mediators among them with mediation analysis.METHODS:The causal effects of several behavioral factors,including screen time,education time,time spent outdoors,and physical activity,on the risk of HM using univariable Mendelian randomization(MR)and MVMR analyses were first assessed.Genome-wide association study summary statistics of serum metabolites were also used in mediation analysis to determine the extent to which serum metabolites mediate the effects of behavioral factors on HM.RESULTS:MR analyses indicated that both increased time spent outdoors and a higher frequency of moderate physical activity significantly reduced the risk of HM.Further MVMR analysis confirmed that moderate physical activity independently contributed to a lower risk of HM.Additionally,MR analyses identified 13 serum metabolites significantly associated with HM,of which 12 were lipids and one was an amino acid derivative.Mediation analysis revealed that six lipid metabolites mediated the protective effects of moderate physical activity on HM,with the highest mediation proportion observed for 1-(1-enyl-palmitoyl)-GPC(p-16:0;30.83%).CONCLUSION:This study suggests that in addition to outdoor time,moderate physical activity habits may have an independent protective effect against HM and pointed to lipid metabolites as priority targets for the prevention due to low physical activity.These results emphasize the importance of physical activity and metabolic health in HM and underscore the need for further study of these complex associations. 展开更多
关键词 high myopia physical activity serum metabolites multivariable Mendelian randomization mediation analysis
原文传递
Steering China’s High-Quality Growth
7
作者 《China Today》 2026年第1期16-19,共4页
Chinese President Xi Jinping has guided China through a year of resilient growth via forward-looking reforms and innovation-driven transformation that is shaping the nation’s economic trajectory for 2026 and beyond.
关键词 forward looking reforms high quality growth STEERING resilient growth innovation driven transformation
在线阅读 下载PDF
Nanosized Anatase TiO_(2) with Exposed(001)Facet for High-Capacity Mg^(2+)Ion Storage in Magnesium Ion Batteries
8
作者 Rong Li Liuyan Xia +6 位作者 Jili Yue Junhan Wu Xuxi Teng Jun Chen Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 2026年第1期438-457,共20页
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize... Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems. 展开更多
关键词 Magnesium ion batteries high capacity Nanosized anatase TiO_(2) Crystal facet Interfacial ion storage
在线阅读 下载PDF
China’s Economy Builds Momentum for High-Quality Growth
9
作者 Zhang Hui 《China Today》 2026年第1期2-2,共1页
As the global economy navigates through a complex landscape of uncertainty and shifting dynamics,the Chinese economy stands out for its remarkable resilience,inherent vitality,and steadfast commitment to a transformat... As the global economy navigates through a complex landscape of uncertainty and shifting dynamics,the Chinese economy stands out for its remarkable resilience,inherent vitality,and steadfast commitment to a transformative,high-quality development path.The latest economic indicators,strategic policy guidance from the Central Economic Work Conference,and a surge in international confidence collectively present a picture of an economy not merely recovering,but actively building its new growth engines.China is transitioning towards a more sustainable and innovation-driven model,with new quality productive forces playing an increasingly prominent role. 展开更多
关键词 economic resilience sustainable growth innovation driven model international confidence economic indicatorsstrategic policy guidance high quality development
在线阅读 下载PDF
Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press 被引量:1
10
作者 Xinyu Zhao Fenglin Ren +8 位作者 Jinze He Yue Pan Hu Tang Xiaoming Zhang Di Yao Ran Liu Kuo Hu Zhaodong Liu Bingbing Liu 《Matter and Radiation at Extremes》 2025年第4期80-87,共8页
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a... The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures. 展开更多
关键词 ultrahigh pressure large conventio study matter extreme conditionsherewe generate high pressures tungsten carbide ultrahigh pressures Kawai type large volume press hard tungsten carbide wc
在线阅读 下载PDF
Pursuing ultrahigh strength-ductility CoCrNi-based medium-entropy alloy by low-temperature pre-aging 被引量:2
11
作者 A.X.Li K.W.Kang +5 位作者 J.S.Zhang M.K.Xu D.Huang S.K.Liu Y.T.Jiang G.Li 《Journal of Materials Science & Technology》 2025年第17期115-128,共14页
Developing high-performance alloys with gigapascal strength and excellent ductility is crucial for modern engineering applications.The concept of multi-component high/medium entropy alloys(H/MEAs)provides an innovativ... Developing high-performance alloys with gigapascal strength and excellent ductility is crucial for modern engineering applications.The concept of multi-component high/medium entropy alloys(H/MEAs)provides an innovative approach to designing such alloys.In this work,we developed the Co_(1.5)CrNi_(1.5)Al_(0.2)Ti_(0.2)MEA,which exhibits outstanding mechanical properties at room temperature through low-temperature pre-aging followed by annealing treatment.Tensile testing reveals that the MEA possesses an ultrahigh yield strength of 20±0785 MPa,an ultimate tensile strength of 2365±70 MPa,and exceptional ductility of 15.8%±1.7%.The superior tensile properties are attributed to the formation of fully recrystal-lized heterogeneous structures(HGS)composed of ultrafine grain(UFG)and fine grain(FG)regions,along with discontinuous precipitation of coherent nano-size lamellar L1_(2)precipitates.The mechanical incompatibility between the UFG region and the FG regions during deformation induces the accumulation of a large number of geometrically necessary dislocations at the interface,resulting in strain distribution and hetero-deformation-induced(HDI)stress accumulation,contributing significantly to HDI strengthening.HDI strengthening,precipitation strengthening,and grain boundary strengthening are the primary mechanisms responsible for the ultra-high yield strength of the MEA.During deformation,the dominant deformation mechanisms include dislocation slip,deformation-induced stacking faults,and Lomer-Cottrell locks,with minor deformation twinning.The synergistic interaction of these multiple deformation modes provides the MEA with excellent work hardening capability,delaying plastic instability and achieving an excellent combination of strength and ductility.This study provides an effective strategy for synergistically strengthening MEAs by combining HDI strengthening with traditional strengthening mechanisms.These findings pave the way for the development of advanced structural materials with high performance tailored for demanding applications in engineering. 展开更多
关键词 high/medium entropy alloy Recrystallized heterogeneous structure Ultra-high mechanical properties Synergistic strengthening Multiple deformation modes
原文传递
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
12
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing high dynamic MEMS components Multiscale control Process optimization high dynamic verification
在线阅读 下载PDF
Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries
13
作者 Rui Zhou Rui Liu +4 位作者 Yun-Nuo Li Si-Jie Jiang Tian-Tian Jing Yan-Song Xu Fei-Fei Cao 《电化学(中英文)》 北大核心 2025年第8期34-43,共10页
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type... Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C. 展开更多
关键词 Dual-ion battery Biomass hard carbon Structural regulation high operating voltage high rate
在线阅读 下载PDF
Critical roles of AlPO_(4) coating in enhancing cycling stability and rate capability of high voltage LiNi_(0.5)Mn_(1.5)O_(4) cathode materials
14
作者 WU Jie LUO Zhihong +6 位作者 CHEN Xiaoli XIONG Fangfang CHEN Li ZHANG Biao SHI Bin OUYANG Quansheng SHAO Jiaojing 《无机化学学报》 北大核心 2025年第5期948-958,共11页
LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LN... LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode. 展开更多
关键词 LiNi_(0.5)Mn_(1.5)O_(4) high voltage lithium‑ion batteries high‑temperature solid‑phase method aluminum phosphate
在线阅读 下载PDF
Characterization of high-performance AlGaN-based solar-blind UV photodetectors
15
作者 FU Yuting LIU Bing +2 位作者 ZHAN Jie ZHENG Fu SUN Zhaolan 《Optoelectronics Letters》 2025年第7期402-406,共5页
This study begins with the fabrication and simulation of high-performance back-illuminated AlGaN-based solar-blind ultraviolet(UV)photodetectors.Based on the photodetectors,a low-noise,high-gain UV detection system ci... This study begins with the fabrication and simulation of high-performance back-illuminated AlGaN-based solar-blind ultraviolet(UV)photodetectors.Based on the photodetectors,a low-noise,high-gain UV detection system circuit is designed and fabricated,enabling the detection,acquisition,and calibration of weak solar-blind UV signals.Experimental results demonstrate that under zero bias conditions,with a UV light power density of 3.45μW/cm^(2) at 260 nm,the sample achieves a peak responsivity(R)of 0.085 A·W^(−1),an external quantum efficiency(EQE)of 40.7%,and a detectivity(D^(*))of 7.46×10^(12) cm·Hz^(1/2)·W^(−1).The system exhibits a bandpass characteristic within the 240–280 nm wavelength range,coupled with a high signal-to-noise ratio(SNR)of 39.74 dB. 展开更多
关键词 high performance PHOTODETECTORS UV low noise solar blind ultraviolet high gain algan based
原文传递
High-capacity and low-expansion MnCO_(3)@cyclized-PAN composite anodes for high-performance lithium-ion batteries
16
作者 Kai Zhang Wen-Ze Cao +7 位作者 Jing Wang Ze-Nan Zhao Wei-Ang Yin Zhao Lv Jun-Fan Zhang Ran Wang Feng Wu Guo-Qiang Tan 《Rare Metals》 2025年第5期3575-3581,共7页
MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and ser... MnCO_(3)represents a potentially high-capacity and low-cost anode candidate to replace graphite for enhancing energy density of commercial lithium-ion batteries,but it suffers from poor electrical conductivity and serious volumetric change,largely hindering its practical applications. 展开更多
关键词 low expansion high performance enhancing energy density mnco composite high capacity anodes cyclized pan
原文传递
Porous highly conductive PEDOT film for high-performance supercapacitors
17
作者 Wanying Zhang Zhen Su +11 位作者 Bei Qi Wentao Wang Shisong Nie Yingzhi Jin Jiaxing Song Lin Hu Xinxing Yin Weihua Ning Xiaoming Yang Hao Wang Zaifang Li Liang Huang 《Nano Materials Science》 2025年第3期392-399,共8页
Thick and highly conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate films with ideal porous structure are fulfilling as electrodes for supercapacitors.However,the homogeneous micro-structure without the... Thick and highly conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate films with ideal porous structure are fulfilling as electrodes for supercapacitors.However,the homogeneous micro-structure without the aid of templates or composite presents a significant obstacle,due to the intrinsic softness of the dominant PSS component.In this study,we have successfully developed a porous configuration by employing a solvothermal approach with ethylene glycol(EG)as the solvent.The synergistic action of elevated pressure and temperature was crucial in prompting EG to tailor the microstructure of the PEDOT:PSS films by removing non-conductive PSS chains and improving PEDOT crystallinity,and the formation of a porous network.The resulting porous PEDOT:PSS films exhibited a high conductivity of 1644 S cm^(-1)and achieved a volumetric capacitance record of 270 F cm^(-3),markedly exceeding previous records.The flexible all-solid-state supercapacitor assembled by the films had an outstanding volumetric capacitance of 97.8 F cm^(-3)and an energy density of 8.7 mWh cm^(-3),which is best one for pure PEDOT:PSS-based supercapacitors.Grazing-incidence wide-angle X-ray scattering,X-ray photoelectron spectroscopy,and other characterizations were carried out to characterize the structure evolution.This work offers an effective novel method for conducting polymer morphology control and promotes PEDOT:PSS applications in energy storage field. 展开更多
关键词 PEDOT POROUS Molecular arrangement high capacitance high energy density
在线阅读 下载PDF
Study on Cultivation Techniques of Spring Soybean for High Quality and High and Stable Yield in Huang-Huai Area
18
作者 Huajun SUN 《Agricultural Biotechnology》 2025年第2期25-28,共4页
As an important grain and oil crop,soybean occupies an important position in China s agricultural production.High quality and stable yield of spring soybean is of great significance for ensuring food security and incr... As an important grain and oil crop,soybean occupies an important position in China s agricultural production.High quality and stable yield of spring soybean is of great significance for ensuring food security and increasing farmers income.Based on the planting experience and scientific research achievements in many regions,this paper systematically expounded a series of cultivation techniques of spring soybean with high quality and high yield from variety selection,preparation before sowing,sowing techniques,field management to disease and pest control and harvest and storage,aiming to provide scientific and comprehensive guidance for soybean growers and promote the development of soybean industry. 展开更多
关键词 Spring soybean high quality high yield Stable yield Cultivation technique
在线阅读 下载PDF
Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures
19
作者 Xiangkui Liu Jingying Liu +8 位作者 Chenglong Zhou Weixia Dong Xuecong Zhang Qianye Wang Huiqing Xu Xulong An Dandan Wang Wei Wei Zhenfei Jiang 《Journal of Materials Science & Technology》 2025年第18期187-193,共7页
Traditional metals often exhibit a trade-offbetween strength and plasticity,limiting their wide application of metals in aerospace,transportation,energy industry and other fields[1-3].In order to overcome this dilemma... Traditional metals often exhibit a trade-offbetween strength and plasticity,limiting their wide application of metals in aerospace,transportation,energy industry and other fields[1-3].In order to overcome this dilemma,high-entropy alloys(HEAs),proposed by Yeh et al.and Cantor et al.,are currently of great interest in the materials community due to their excellent mechanical properties[4-7].To further promote the wide application of HEAs in industrial production,Lu et al.developed a new eutectic high-entropy alloy(EHEAs)by combining the potential advantages of traditional eutectic alloys and HEAs[8-11]. 展开更多
关键词 room temperature DUCTILITY eutectic high entropy alloy strength ultra high strength trade off traditional metals duplex heterostructure
原文传递
Taming of trinitromethyl-oxadiazole to access high density and high oxygen balance via a dual modulation strategy
20
作者 Jinya Zhang Teng Fei +4 位作者 Jingwei Meng Jinxiong Cai Lei Zhang Siping Pang Chunlin He 《Defence Technology(防务技术)》 2025年第1期142-149,共8页
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv... Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials. 展开更多
关键词 Energetic materials high oxygen balance high density Dual modulation Trinitromethyl group
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部