The parameters of facial skin on human body were measured by Visia-CR,and the weight coefficients of each evaluation index were clarified by the analytic hierarchy process,thus the comprehensive score was calculated.T...The parameters of facial skin on human body were measured by Visia-CR,and the weight coefficients of each evaluation index were clarified by the analytic hierarchy process,thus the comprehensive score was calculated.The influence of four film-forming agents on the comprehensive score at different quality fractions was examined by single factor experiment to determine the level of each factor.In addition,the optimal proportion of the four film-forming agents was selected by combining multi-indicator comprehensive scoring method and orthogonal experiment.The results show that the best combination of the four film-forming agents in the 8 h wear test is A_(2)B_(2)C_(2)D_(1),and the quality fractions of each component are 2%of trimethylsiloxy silicate,1%of polydimethylsiloxane,2%of(acrylate(ester)/poly(dimethylsiloxane)copolymer,cyclopentasiloxane)and 0.5%of VP/hexadecene copolymer.展开更多
Renewable energy sources,including wind,solar,and biofuels,are essential for promoting sustainable economic development and mitigating environmental challenges.As China’s overseas investments in renewable energy expa...Renewable energy sources,including wind,solar,and biofuels,are essential for promoting sustainable economic development and mitigating environmental challenges.As China’s overseas investments in renewable energy expand,effective risk assessment and management have become critical.This study develops a comprehensive risk evaluation framework for China’s overseas renewable energy investments using the Fuzzy Analytic Hierarchy Process(FAHP).The framework incorporates political,economic,and project-specific risks,organized through three primary criteria,nine sub-criteria,and thirty tertiary indicators.By integrating expert judgments with fuzzy set theory,the FAHP methodology assigns accurate weights to risk factors and ensures consistency in evaluation.The findings identify political risks as the most significant,emphasizing their influence on investment strategies.These insights offer valuable guidance for policymakers and investors to enhance risk management strategies and ensure the sustainability of China’s renewable energy initiatives abroad.展开更多
By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ...By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible展开更多
A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absol...A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.展开更多
With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and ch...With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.展开更多
Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually sin...Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.展开更多
A new approach combining the certainty factor(CF) and analytic hierarchy process(AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, Ch...A new approach combining the certainty factor(CF) and analytic hierarchy process(AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China. Landslide inventory data were collected based on field investigations and remote sensing interpretations. A total of 791 landslides were identified. A total of 633 landslides were randomly selected from this data setas the training set, and the remaining landslides were used for validation as the test set. Nine factors, including the slope angle, slope aspect, slope curvature, lithology, distance to faults, distance to streams, precipitation, road network intensity degree and land use were chosen as the landslide causal factors for further susceptibility assessment. The weight of each factor and its subclass were calculated by AHP and CF methods. Landslide susceptibility was compared between the bivariate statistical method and the proposed CF-AHP method. The results indicate that the distance to streams, distance to faults and lithology are the most dominant causal factors associated with landslides. The susceptibility zonation was categorized into five classes of landslide susceptibility, i.e., very high, high, moderate, low and very low level. Lastly, the relative operating characteristics(ROC) curve was used to validate the accuracy of the new approach, and the result showed a satisfactory prediction rate of 78.3%, compared to 69.2% obtained with the landslide susceptibility index method. The results indicate that the CF-AHP combined method is more appropriate for assessing the landslide susceptibility in this area.展开更多
The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalay...The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalaya. During study, the information about the causative factors was generated and the landslide hazard zonation maps were delineated using Information Value Method(IV) and Analytical Hierarchy Process(AHP) using Arc GIS(ESRI). For this purpose, the study area was selected in a part of Ravi river catchment along one of the landslide prone Chamba to Bharmour road corridor of National Highway(NH^(-1)54 A) in Himachal Pradesh, India. A numeral landslide triggering geoenvironmental factors i.e. slope, aspect, relative relief, soil, curvature, land use and land cover(LULC), lithology, drainage density, and lineament density were selected for landslide hazard mapping based on landslide inventory. Landslide hazard zonation map was categorized namely "very high hazard, high hazard, medium hazard, low hazard, and very low hazard". The results from these two methods were validated using Area Under Curve(AUC) plots. It is found that hazard zonation map prepared using information value method and analytical hierarchy process methods possess the prediction rate of 78.87% and 75.42%, respectively. Hence, landslide hazardzonation map obtained using information value method is proposed to be more useful for the study area. These final hazard zonation maps can be used by various stakeholders like engineers and administrators for proper maintenance and smooth traffic flow between Chamba and Bharmour cities, which is the only route connecting these tourist places.展开更多
To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(...To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.展开更多
With the increasing public consciousness on environmental issues, chemical products and process designs require simultaneous satisfaction and compromise of environmental and economical requirements. To fulfill the two...With the increasing public consciousness on environmental issues, chemical products and process designs require simultaneous satisfaction and compromise of environmental and economical requirements. To fulfill the two conflicting while complementary objectives, a systematic approach for life cycle design of a chemical product is proposed in this article. Multiattribute decision-making is adopted in a trade-off consideration of both technical economical evaluation and environmental impacts assessment using the analytic hierarchy process (AHP) approach. On the basis of an evaluation of the relative importance of the criteria multicriteria decision making is performed. In this study, an AHP model is used to derive single a criteria score by analyzing the environmental impact and life cycle cost of a product, respectively. And a fluctuant weight analysis is put forth to calculate the integrated index of the product to enable products to be ranked or selected intuitionally and conveniently. The proposed AHP model has been applied to a case study, a comparative study on chamber cleaning with NF3 and C2F6. The resuits show that the protposed AHP model is Capable of providing a rational and relevant evaluation.展开更多
Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only imm...Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.展开更多
This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzh...This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.展开更多
In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(...In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.展开更多
The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation cred...The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation credibility. In this paper, the hydrocarbon accumulation system is evaluated quantitatively by establishing a hierarchy structure model based on an analytical hierarchy process. The hydrocarbon accumulation system of a higher exploration degree is selected as a calibration area and its hydrocarbon accumulation coefficient can be calculated using methods of hydrocarbon generation potential and reservoir-scale sequence. The hydrocarbon accumulation coefficient of a petroleum accumulation system can be gained by analogy of reservoir forming comprehensive evaluation results with the calibration area. The hydrocarbon accumulation coefficient of each petroleum accumulation system in the upper reservoir-forming combination of the Liaohe Western Sag can be obtained with this method. Practice shows that using the analytical hierarchy process to quantitatively evaluate the hydrocarbon accumulation system and then quantitatively predict the hydrocarbon accumulation coefficient decreases the influence of human factors in resources evaluation, and makes the resources assessment more objective and closer to the actual geological condition.展开更多
Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process ...Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process and fuzzy comprehensive evaluation is established to identify potential risks in time.First,the corrosion rate and residual strength characteristics are analyzed through corrosion tests and numerical simulations,respectively,to determine the risk factors that may lead to an accident.Then,an index system for corroded casing risk evaluation is established based on six important factors:temperature,CO2 partial pressure,flow velocity,corrosion radius,corrosion depth and wellhead pressure.Subsequently,the index weights are calculated via the analytic hierarchy process.Finally,the risk level of corroded casing is obtained via the fuzzy comprehensive evaluation.The corroded casing risk assessment model has been verified by a case well,which shows that the model is valuable and feasible.It provides an effective decision-making method for the risk evaluation of corroded casing in CO2 injection well,which is conductive to improve the wellbore operation efficiency.展开更多
Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and ...Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and poly-dimethyl diallyl ammonium chloride(PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process(AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH_(4)^(+)-N and NO_(3)^(–)-N in the residual water. The increase of NH_(4)^(+)-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO_(3)^(-)-N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.展开更多
Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making i...Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.展开更多
Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, ...Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.展开更多
Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate dec...Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
文摘The parameters of facial skin on human body were measured by Visia-CR,and the weight coefficients of each evaluation index were clarified by the analytic hierarchy process,thus the comprehensive score was calculated.The influence of four film-forming agents on the comprehensive score at different quality fractions was examined by single factor experiment to determine the level of each factor.In addition,the optimal proportion of the four film-forming agents was selected by combining multi-indicator comprehensive scoring method and orthogonal experiment.The results show that the best combination of the four film-forming agents in the 8 h wear test is A_(2)B_(2)C_(2)D_(1),and the quality fractions of each component are 2%of trimethylsiloxy silicate,1%of polydimethylsiloxane,2%of(acrylate(ester)/poly(dimethylsiloxane)copolymer,cyclopentasiloxane)and 0.5%of VP/hexadecene copolymer.
基金supported by the project VSB-TU Ostrava,SP2024/045.
文摘Renewable energy sources,including wind,solar,and biofuels,are essential for promoting sustainable economic development and mitigating environmental challenges.As China’s overseas investments in renewable energy expand,effective risk assessment and management have become critical.This study develops a comprehensive risk evaluation framework for China’s overseas renewable energy investments using the Fuzzy Analytic Hierarchy Process(FAHP).The framework incorporates political,economic,and project-specific risks,organized through three primary criteria,nine sub-criteria,and thirty tertiary indicators.By integrating expert judgments with fuzzy set theory,the FAHP methodology assigns accurate weights to risk factors and ensures consistency in evaluation.The findings identify political risks as the most significant,emphasizing their influence on investment strategies.These insights offer valuable guidance for policymakers and investors to enhance risk management strategies and ensure the sustainability of China’s renewable energy initiatives abroad.
基金Supported by the Jiangshu Province Communication Scientific Research Project(06Y21)Zhejiang Province Road Scientific Research Project(2007-013-11L)~~
文摘By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552,BCS-0527508)the National Natural Science Foundation of China (No. 51010044,U1134206)+2 种基金the Fok YingTong Education Foundation (No. 114024)the Natural Science Foundation of Jiangsu Province (No. BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No. 0901005C)
文摘A min-max optimization method is proposed as a new approach to deal with the weight determination problem in the context of the analytic hierarchy process. The priority is obtained through minimizing the maximal absolute difference between the weight vector obtained from each column and the ideal weight vector. By transformation, the. constrained min- max optimization problem is converted to a linear programming problem, which can be solved using either the simplex method or the interior method. The Karush-Kuhn- Tucker condition is also analytically provided. These control thresholds provide a straightforward indication of inconsistency of the pairwise comparison matrix. Numerical computations for several case studies are conducted to compare the performance of the proposed method with three existing methods. This observation illustrates that the min-max method controls maximum deviation and gives more weight to non- dominate factors.
基金Supported by Rural Development Research Center in Sichuan(2009CR2110921)~~
文摘With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.
文摘Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.
基金financial support from National Natural Science Foundation of China (Grant No. 41272282)National Natural Science Foundation of China-Youth Foundation (Grant No. 41402254)+1 种基金geological disaster survey projects of China Geological Survey (Grant No. 1212011220135, Grant No. DDW2016-01)the Fundamental Research Funds for the Central Universities (Grant No. 310826175030)
文摘A new approach combining the certainty factor(CF) and analytic hierarchy process(AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China. Landslide inventory data were collected based on field investigations and remote sensing interpretations. A total of 791 landslides were identified. A total of 633 landslides were randomly selected from this data setas the training set, and the remaining landslides were used for validation as the test set. Nine factors, including the slope angle, slope aspect, slope curvature, lithology, distance to faults, distance to streams, precipitation, road network intensity degree and land use were chosen as the landslide causal factors for further susceptibility assessment. The weight of each factor and its subclass were calculated by AHP and CF methods. Landslide susceptibility was compared between the bivariate statistical method and the proposed CF-AHP method. The results indicate that the distance to streams, distance to faults and lithology are the most dominant causal factors associated with landslides. The susceptibility zonation was categorized into five classes of landslide susceptibility, i.e., very high, high, moderate, low and very low level. Lastly, the relative operating characteristics(ROC) curve was used to validate the accuracy of the new approach, and the result showed a satisfactory prediction rate of 78.3%, compared to 69.2% obtained with the landslide susceptibility index method. The results indicate that the CF-AHP combined method is more appropriate for assessing the landslide susceptibility in this area.
文摘The present study is focused on a comparative evaluation of landslide disaster using analytical hierarchy process and information value method for hazard assessment in highly tectonic Chamba region in bosom of Himalaya. During study, the information about the causative factors was generated and the landslide hazard zonation maps were delineated using Information Value Method(IV) and Analytical Hierarchy Process(AHP) using Arc GIS(ESRI). For this purpose, the study area was selected in a part of Ravi river catchment along one of the landslide prone Chamba to Bharmour road corridor of National Highway(NH^(-1)54 A) in Himachal Pradesh, India. A numeral landslide triggering geoenvironmental factors i.e. slope, aspect, relative relief, soil, curvature, land use and land cover(LULC), lithology, drainage density, and lineament density were selected for landslide hazard mapping based on landslide inventory. Landslide hazard zonation map was categorized namely "very high hazard, high hazard, medium hazard, low hazard, and very low hazard". The results from these two methods were validated using Area Under Curve(AUC) plots. It is found that hazard zonation map prepared using information value method and analytical hierarchy process methods possess the prediction rate of 78.87% and 75.42%, respectively. Hence, landslide hazardzonation map obtained using information value method is proposed to be more useful for the study area. These final hazard zonation maps can be used by various stakeholders like engineers and administrators for proper maintenance and smooth traffic flow between Chamba and Bharmour cities, which is the only route connecting these tourist places.
基金supported by the National Natural Science Foundation of China(6160150161502521)
文摘To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.
基金Supported by the National Natural Science Foundation of China (No.20376025, No.20536020) the China Excellent YoungScientist Fund (No.20225620).
文摘With the increasing public consciousness on environmental issues, chemical products and process designs require simultaneous satisfaction and compromise of environmental and economical requirements. To fulfill the two conflicting while complementary objectives, a systematic approach for life cycle design of a chemical product is proposed in this article. Multiattribute decision-making is adopted in a trade-off consideration of both technical economical evaluation and environmental impacts assessment using the analytic hierarchy process (AHP) approach. On the basis of an evaluation of the relative importance of the criteria multicriteria decision making is performed. In this study, an AHP model is used to derive single a criteria score by analyzing the environmental impact and life cycle cost of a product, respectively. And a fluctuant weight analysis is put forth to calculate the integrated index of the product to enable products to be ranked or selected intuitionally and conveniently. The proposed AHP model has been applied to a case study, a comparative study on chamber cleaning with NF3 and C2F6. The resuits show that the protposed AHP model is Capable of providing a rational and relevant evaluation.
文摘Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.
文摘This study examined public attitudes concerning the value of outdoor spaces which people use daily. Two successive analyses were performed based on data from common residents and college students in the city of Hangzhou, China. First, citizens registered various items constituting desirable values of residential outdoor spaces through a preliminary questionnaire. The result proposed three general attributes (functional, aesthetic and ecological) and ten specific qualities of residential outdoor spaces. An analytic hierarchy process (AHP) was applied to an interview survey in order to clarify the weights among these attributes and qualities. Second, principal factors were extracted from the ten specific qualities with principal component analysis (PCA) for both the common case and the campus case. In addition, the variations of respondents’ groups were classified with cluster analysis (CA) using the results of the PCA. The results of the AHP application found that the public prefers the functional attribute, rather than the aesthetic attribute. The latter is always viewed as the core value of open spaces in the eyes of architects and designers. Fur-thermore, comparisons of ten specific qualities showed that the public prefers the open spaces that can be utilized conveniently and easily for group activities, because such spaces keep an active lifestyle of neighborhood communication, which is also seen to protect human-regarding residential environments. Moreover, different groups of respondents diverge largely in terms of gender, age, behavior and preference.
基金Project(50977003) supported by the National Natural Science Foundation of China
文摘In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.
基金supported by the Foundation Projectof State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation credibility. In this paper, the hydrocarbon accumulation system is evaluated quantitatively by establishing a hierarchy structure model based on an analytical hierarchy process. The hydrocarbon accumulation system of a higher exploration degree is selected as a calibration area and its hydrocarbon accumulation coefficient can be calculated using methods of hydrocarbon generation potential and reservoir-scale sequence. The hydrocarbon accumulation coefficient of a petroleum accumulation system can be gained by analogy of reservoir forming comprehensive evaluation results with the calibration area. The hydrocarbon accumulation coefficient of each petroleum accumulation system in the upper reservoir-forming combination of the Liaohe Western Sag can be obtained with this method. Practice shows that using the analytical hierarchy process to quantitatively evaluate the hydrocarbon accumulation system and then quantitatively predict the hydrocarbon accumulation coefficient decreases the influence of human factors in resources evaluation, and makes the resources assessment more objective and closer to the actual geological condition.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2016ZX05042004)the Joint Funds of the National Natural Science Foundation of China(Grant no.U1762104)+3 种基金the Major Scientific and Technological Projects of CNPC(Grant No.ZD2019-184-004)the Fundamental Research Funds for the Central Universities(20CX02306A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration EquipmentThe authors also would like to express their sincere gratitude to Dr.Zhang Dalei for his assistance in corrosion tests.
文摘Casing corrosion during CO2 injection or storage results in significant economic loss and increased production risks.Therefore,in this paper,a corroded casing risk assessment model based on analytic hierarchy process and fuzzy comprehensive evaluation is established to identify potential risks in time.First,the corrosion rate and residual strength characteristics are analyzed through corrosion tests and numerical simulations,respectively,to determine the risk factors that may lead to an accident.Then,an index system for corroded casing risk evaluation is established based on six important factors:temperature,CO2 partial pressure,flow velocity,corrosion radius,corrosion depth and wellhead pressure.Subsequently,the index weights are calculated via the analytic hierarchy process.Finally,the risk level of corroded casing is obtained via the fuzzy comprehensive evaluation.The corroded casing risk assessment model has been verified by a case well,which shows that the model is valuable and feasible.It provides an effective decision-making method for the risk evaluation of corroded casing in CO2 injection well,which is conductive to improve the wellbore operation efficiency.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2018ZX07110004)。
文摘Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and poly-dimethyl diallyl ammonium chloride(PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process(AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH_(4)^(+)-N and NO_(3)^(–)-N in the residual water. The increase of NH_(4)^(+)-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO_(3)^(-)-N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.
基金supported by National Basic Research Program (973 Program,No.2004CB719402)National Natural Science Foundation of China (No.60736019)Natural Science Foundation of Zhejiang Province, China(No.Y105430).
文摘Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.
基金financially supported by the National Key Research and Development Program of China (2016YFB1200401)the Western Construction Project of the Ministry of Transport (Grant No. 2015318J29040)
文摘Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.
基金the financial support through Research University Grant Scheme 2007 (RUG 2007) with vote number 91045
文摘Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.