Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a...Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities.展开更多
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor...Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.展开更多
In this work the flower-like hierarchical structures(HS) based on 3 D pristine ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au were successfully obtained by a template-free solvothermal and deposition-precipitation method.The decolor...In this work the flower-like hierarchical structures(HS) based on 3 D pristine ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au were successfully obtained by a template-free solvothermal and deposition-precipitation method.The decolorization/photodegradation of these structures towards model organic dye(rhodamine 6 G) was studied.The synthesized ZnO-based HS were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),UV-vis and photoluminescence(PL) spectroscopies.The proposed synthesis approaches allow to obtain highly crystalline 3 D ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au composites.Results of scanning microscopy show that ZnO flower-like HS are assemblies from smaller components,forming larger ones,the whole ZnO structure was approximately 3 μm.Au nanoparticles(size^10 nm)are successfully deposited on ZnO HS surface.Luminescent studies show that ZnO is an ideal matrix for incorporation of Eu^3+ ions in broad concentration range(Eu^3+=1.0 at%-5.0 at%) with an efficient red luminescence.The strong UV emission in ZnO,as well as ZnO;Eu^3+HS is observed under 325 nm excitation.Doping of ZnO HS matrix by Eu^3+ions leads to the red shift of deep level emission peak(DLE).The PL intensity reaches the maximum up to 5 at% Eu^3+.The photocatalytic properties of ZnO and ZnO:Eu^3+ @Au HS were investigated under UV-Vis light irradiation towards rhodamine 6 G.The obtained results demonstrate the synergetic effect of the deposited gold nanoparticles and Eu3^+ doping on photocatalytic activity of ZnO:Eu^3+@Au HS in comparison to pristine ZnO and ZnO:Eu^3+ HS.展开更多
One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing ro...One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing role of the lipopolysaccharide(LPS) outer layer of the gram-negative shell during this procedure.Herein,by avoiding the unexpected influence induced by the varied topographies,control over gram-negative bacteria adhesion by wettability is achieved on biomimetic hierarchical surfaces,which is mainly mediated by LPS layer.The study provides a methodology to have a good control over bacteria cell adhesion by properly designing wettable surface structures.This design concept is helpful for developing new generations of biomaterials in order to control a variety of diseases induced by gramnegative bacteria,which still continue to be very important and necessary in the fields of biomedicine.展开更多
In this paper,a three-dimensional(3D)hierar-chical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method.Various techniques char...In this paper,a three-dimensional(3D)hierar-chical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method.Various techniques characterized the as-synthesized ZnO/NiO composites and pure ZnO.The p-NiO/n-ZnO junctions formed between adjacent ZnO and NiO nanoparticles,improving the gas sensing performance.The ZnO/NiO composite with the Ni:Zn atomic ratio of 7.42:100 exhibited the best iso-propanol sensing properties.Compared to pure ZnO,it showed high selectivity and sensitivity(R_(a)/R_(g)=221.3 toward 400×10^(-6)isopropanol),fast response rate(less than 10 s),short recovery time,and simultaneously low operating temperature.Also,the ZnO/NiO composite exhibited a wide sensing range(1×10^(-6)-1000×10^(-6))to isopropanol and processed good long-term stability.The experimental results suggested the potential application in fabricating efficient isopropanol sensors using this ZnO/NiO composite.The enhanced isopropanol sensing mech-anism is also discussed in charge transfer between heterojunctions,surface area,and surface defects.展开更多
In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infi...In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infiltration(CVI)process.The graphene framework prepared by 3D printing and frozen self-assembly exhibits a lightweight structure and a perforated conductive network,which extends the transmission path of incident microwaves.The introduced ceramic coatings can effectively tune the impedance matching degree and supply a lossy phase,and the hierarchical structure of the composites enhances the multiple scattering of the incident microwaves.As expected,the 3D-rGO/BN/SiC composites possess an excellent absorbing performance with a minimum reflection loss value of–37.8 dB,and the widest effective absorbing bandwidth(RL<–10 dB)of 5.90 GHz is obtained.The controllable fabrication of composites can provide a guideline for rational design and fabrication of high-performance electromagnetic waves absorbing materials in practical applications.展开更多
Addressing irregular bone defects is a formidable clinical challenge,as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration,resulting in suboptimal healing.This study introduces...Addressing irregular bone defects is a formidable clinical challenge,as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration,resulting in suboptimal healing.This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure(macro-,meso-,and nano-scales)and tempered degradation(microscale),intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs.For the hierarchical structure,at the macroscale,it can feature anatomic geometries for seamless integration with the bone defect;The mesoscale pores are devised with optimized curvature and size,providing an adequate mechanical response as well as promoting cellular proliferation and vascularization,essential for natural bone mimicry;The nanoscale textured surface is enriched with a layered double hydroxide membrane,augmenting bioactivity and osteointegration.Moreover,microscale enhancements involve a duallayer coating of high-temperature oxidized film and hydrotalcite,offering a robust shield against fast degradation.Eventually,this scaffold demonstrates superior geometrical characteristics,load-bearing capacity,and degradation performance,significantly outperforming traditional scaffolds based on in vitro and in vivo assessments,marking a breakthrough in repairing customized bone defects.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
This work proposes a bioinspired hierarchical actuation strategy based on liquid crystal elastomers(LCEs),inspired by the helical topological dynamic adaptation mechanism of plant tendrils,to overcome the bottleneck o...This work proposes a bioinspired hierarchical actuation strategy based on liquid crystal elastomers(LCEs),inspired by the helical topological dynamic adaptation mechanism of plant tendrils,to overcome the bottleneck of precise anisotropic control in LCEs.Mechanically pre-programmed hierarchical LCE structures responsive to near-infrared(NIR)light were fabricated:the oriented constrained actuator achieves asymmetric contraction under NIR irradiation,enabling reversible switching between helix and planar morphologies with multi-terrain grasping capability;the biomimetic vine-like helical actuator,composed of Ag nanowire photothermal layers combined with helical LCE,utilizes temperaturegradient-induced phase transition wave propagation to achieve NIR-controlled climbing motion;the M?bius topology actuator realizes reversible deformation or self-locking states by tuning the twist angle(180°/360°);based on these,a bioinspired koala-like concentric soft robot was constructed,successfully demonstrating tree trunk climbing.This study reveals that artificial helical stretching significantly enhances the molecular chain orientation of LCEs(surpassing uniaxial stretching),reaching up to 1000%pre-strain,and the Ag NWs/LCE/PI(Polyimide)tri-layer structure achieves efficient photothermal-mechanical energy conversion via localized surface plasmon resonance(LSPR).This study provides a new paradigm for soft robotics material design and topological programming,demonstrating the potential for remote operation and adaptive grasping.展开更多
The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial.This review focuses on recent advancements in hierarchical structure de...The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial.This review focuses on recent advancements in hierarchical structure design for innovative cooling textiles.Beginning with insights into fundamental heat transfer processes between the human body,textile,and the surroundings,we uncover key control mechanisms.Then the advanced hierarchical structure designs enabling effective radiation,sweat evaporation,conduction management,and integration of cold energy sources for realizing effective human body cooling are systematically summarized.Additionally,we explore multifunctional designs beyond cooling,including switchable cooling-heating and sensing.Finally,we engage in discussions on unifying cooling performance tests and additional multiple requirements to make strides toward practical applications.This review is anticipated to be a valuable resource,providing the scientific and industrial communities with a quick grasp of past advancements,current challenges,and future directions in achieving effective human body cooling.展开更多
Endowing stimuli-responsive materials with micro-nano structures is an intriguing strategy for the fabrication of superwetting surfaces;however,its application is limited by poor chemical/mechanical stability.Herein,a...Endowing stimuli-responsive materials with micro-nano structures is an intriguing strategy for the fabrication of superwetting surfaces;however,its application is limited by poor chemical/mechanical stability.Herein,a simple and versatile strategy was developed to fabricate durable polymeric superwetting surfaces with photoswitchable wettability on hierarchically structured metallic substrates.Inspired by nature,a novel functional terpolymer incorporating mussel-inspired catechol groups,photoresponsive azobenzene groups,and low-surface-energy fluorine-containing groups was synthesized via solution radical polymerization.The azobenzene-containing terpolymer possesses outstanding photoresponsiveness in both the solution and film states because of the trans-cis isomerization of the azobenzene moieties.After dip-coating with the mussel-inspired azo-copolymer,the as-prepared smart surfaces exhibited a photo-triggered change in wettability between high hydrophobicity and superhydrophilicity.More importantly,these superwetting surfaces with enhanced adhesion properties can tolerate harsh environmental conditions and repeated abrasion tests,thereby demonstrating excellent chemical robustness and mechanical durability.This study paves a new avenue for the convenient and large-scale fabrication of robust smart surfaces that could find widespread potential applications in microfluidic devices,water treatment,and functional coatings.展开更多
SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,red...SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.展开更多
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au...Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.展开更多
K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require f...K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require further investigation.In this study,novel N-doped multichannel carbon nanofibers(h-NMCNFs)with hierarchical porous structures were successfully synthesized as efficient cathode hosts for K–Se batteries through the carbonization of two electrospun immiscible polymer nanofibers and subsequent chemical activation.Mesopores originated from the decomposition of the polymer embedded in the carbon nanofibers,and micropores were introduced via KOH activation.During the activation step,hierarchical porous carbon nanofibers with enhanced pore volumes were formed because of the micropores in the carbon nanofibers.Owing to the mesopores that enabled easy access to the electrolyte and the high utilization of chain-like Se within the micropores,the Se-loaded hierarchical porous carbon nanofibers(60 wt%Se)exhibited a high discharge capacity and excellent rate performance.The discharge capacity of the nanofibers at the 1,000th cycle was 210.8 mA.h.g^(-1)at a current density of 0.5C.The capacity retention after the initial activation was 64%.In addition,a discharge capacity of 165 mA.h.g^(-1)was obtained at an extremely high current density of 3.0C.展开更多
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo...Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.展开更多
The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure const...The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure construction is thought as a promising route to improve the microwave absorption performance of the materials.In the present work,layer-structured Co-metal-organic frameworks(Co-MOFs)precursors were grown in-situ on the surface of carbon fibers with the hydrothermal method.After annealed at 500℃ under Ar atmosphere,a novel multiscale hierarchical composite(Co@C/CF)was obtained with the support of carbon fibers,keeping the flower-like structure.Scanning electron microscope,transmission electron microscope,X-ray diffraction,Raman,and X-ray photoelectron spectroscopy were performed to analyze the microstructure and composition of the hierarchical structure,and the microwave absorption performance of the Co@C/CF composites were investigated.The results showed that the growth of the flower-like structure on the surface of carbon fiber was closely related to the metal-to-ligand ratio.The optimized Co@C/CF flower-like composites achieved the best reflection loss of−55.7 dB in the low frequency band of 6–8 GHz at the thickness of 2.8 mm,with the corresponding effective absorption bandwidth(EAB)of 2.1 GHz.The EAB of 3.24 GHz was achieved in the high frequency range of 12–16 GHz when the thickness was 1.5 mm.The excellent microwave absorption performance was ascribed to the introduction of magnetic components and the construction of the unique structure.The flower-like structure not only balanced the impedance of the fibers themselves,but also extended the propagation path of the microwave and then increased the multiple reflection losses.This work provides a convenient method for the design and development of wave-absorbing composites with in-situ integrated structure.展开更多
Fabricating damage tolerant porous ceramics with efficient energy absorption and impact-resistant capability has been a challenge because of the brittle nature of ceramic materials.In nature,mineralized tissues or org...Fabricating damage tolerant porous ceramics with efficient energy absorption and impact-resistant capability has been a challenge because of the brittle nature of ceramic materials.In nature,mineralized tissues or organisms such as cuttlebones and diatoms have evolved with hierarchical porous structures to overcome this difficulty.A bioinspired design of ceramic lattice structure with pores at multiple length scales,ranging from few nanometers to hundreds of micrometers,is proposed in the present work.These ceramic lattices with hierarchical porous structures were successfully fabricated via 3D cryogenic printing.Under quasi-static compressions,the printed ceramic lattices showed unprecedented long plateau strain(∼60%)and a specific energy absorption of∼10 kJ·kg^(−1) with a porosity of∼90%.The resulting energy absorption capability was comparable with most composites and metals,thus overcoming the brittle nature of traditional porous ceramics.This was attributed to the delayed destruction of the lattice structure,as well as the gradual collapse of pores at multiple length scales.Similar trends have also been observed under split Hopkinson pressure bar(SHPB)tests,indicating excellent energy absorption under high strain-rate impacts.The proposed 3D printing technique that produces hierarchical pores was also demonstrated to apply to other functional materials,such as silicon carbide,barium titanate,hydroxyapatite,and even titanium alloy,thus opening up new possibilities for fabricating bioinspired hierarchical porous structures.展开更多
Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes ...Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes to the formation of an electromagnetic(EM)coupling network,enhancing EM properties at a low FL.However,precisely controlling the length of 1D-MMFs to regulate permittivity at low FL poses a challenge.Herein,a novel magnetic field-assisted growth strategy was used to fabricate Co-based fibers with adjustable permittivity and aspect ratios.With a variety of FL changes,centimeter-level Co long fibers(Co-lf)consistently exhibited higher permittivity than Co particles and Co short fibers due to the enhancement of the effective EM coupling.The Co-lf exhibits excellent EMA performance(-54.85 dB,5.8 GHz)at 10 wt.%FL.Meanwhile,heterogeneous interfaces were introduced to increase the interfacial polarization through a fine phosphorylation design,resulting in elevated EMA performances(-51.50 dB,6.6 GHz)at 10 wt.%FL for Co_(2)P/Co long fibers.This study improves the orderliness of the particle arrangement by regulating the length of 1D-MMFs,which affects the behavior of electrons inside the fibers,providing a new perspective for improving the EMA properties of magnetic materials at a low FL.展开更多
Proton exchange membrane fuel cell(PEMFC)is a promising clean energy source,but its performance and stability are vulnerable to the negative effects of humidity conditions.The gas diffusion substrate(GDS)plays a pivot...Proton exchange membrane fuel cell(PEMFC)is a promising clean energy source,but its performance and stability are vulnerable to the negative effects of humidity conditions.The gas diffusion substrate(GDS)plays a pivotal role in regulating the moisture and gas transport.The single pore structure of traditionally designed GDS often leads to the pathway competition between moisture and gas,which effects the efficiency of fuel cells.In this study,we report on a hierarchical fibrous paper with tunable hierarchical pores for a sustainable GDS.This design offers gas permeability under wet conditions,by separating the gas pathway from the moisture pathway,thus mitigating their pathway competition.In addition,this paper forms a multi-scale scaffold that absorbs moisture under high humidity conditions and releases it under dry conditions.It is allowed to maintain an optimal internal humidity and further enhances the humidity adaptability.Furthermore,the carbon footprint is only 15.97%,significantly lower than commercial alternatives.This feature makes it a sustainable solution to stabilize PEMFCs under diverse humidity conditions.展开更多
Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium...Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFC2400201)the National Natural Science Foundation of China(No.81830033)+1 种基金the Natural Science Foundation of Fujian Province,China(No.2023J05097)the Young and Middle-aged Teacher Education Research Project of the Education Department of Fujian Province,China(No.JAT220004)。
文摘Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52105303 and 52025053)Natural Science Foundation of Jilin Province(No.20220101209JC)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003).
文摘Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf.
基金Project supported by the National Science Centre of Poland by the SONATA 11 project UMO-2016/21/D/ST3/00962
文摘In this work the flower-like hierarchical structures(HS) based on 3 D pristine ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au were successfully obtained by a template-free solvothermal and deposition-precipitation method.The decolorization/photodegradation of these structures towards model organic dye(rhodamine 6 G) was studied.The synthesized ZnO-based HS were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),UV-vis and photoluminescence(PL) spectroscopies.The proposed synthesis approaches allow to obtain highly crystalline 3 D ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au composites.Results of scanning microscopy show that ZnO flower-like HS are assemblies from smaller components,forming larger ones,the whole ZnO structure was approximately 3 μm.Au nanoparticles(size^10 nm)are successfully deposited on ZnO HS surface.Luminescent studies show that ZnO is an ideal matrix for incorporation of Eu^3+ ions in broad concentration range(Eu^3+=1.0 at%-5.0 at%) with an efficient red luminescence.The strong UV emission in ZnO,as well as ZnO;Eu^3+HS is observed under 325 nm excitation.Doping of ZnO HS matrix by Eu^3+ions leads to the red shift of deep level emission peak(DLE).The PL intensity reaches the maximum up to 5 at% Eu^3+.The photocatalytic properties of ZnO and ZnO:Eu^3+ @Au HS were investigated under UV-Vis light irradiation towards rhodamine 6 G.The obtained results demonstrate the synergetic effect of the deposited gold nanoparticles and Eu3^+ doping on photocatalytic activity of ZnO:Eu^3+@Au HS in comparison to pristine ZnO and ZnO:Eu^3+ HS.
基金the NSFC(Nos.51273111,51173105,51573092)the National Basic Research Program of China(973 Program,No.2012CB933803)SJTU-UM Collaborative Research Program,the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning
文摘One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing role of the lipopolysaccharide(LPS) outer layer of the gram-negative shell during this procedure.Herein,by avoiding the unexpected influence induced by the varied topographies,control over gram-negative bacteria adhesion by wettability is achieved on biomimetic hierarchical surfaces,which is mainly mediated by LPS layer.The study provides a methodology to have a good control over bacteria cell adhesion by properly designing wettable surface structures.This design concept is helpful for developing new generations of biomaterials in order to control a variety of diseases induced by gramnegative bacteria,which still continue to be very important and necessary in the fields of biomedicine.
基金financially supported by the Distinguished Taishan Scholars in Climbing Plan (No. tspd20161006)the Major-Special Science and Technology Projects in Shandong Province(Nos.2019JZZY010303 and 2019JZZY010360)Shandong Provincial Natural Science Foundation (No. ZR2019MEM049)。
文摘In this paper,a three-dimensional(3D)hierar-chical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method.Various techniques characterized the as-synthesized ZnO/NiO composites and pure ZnO.The p-NiO/n-ZnO junctions formed between adjacent ZnO and NiO nanoparticles,improving the gas sensing performance.The ZnO/NiO composite with the Ni:Zn atomic ratio of 7.42:100 exhibited the best iso-propanol sensing properties.Compared to pure ZnO,it showed high selectivity and sensitivity(R_(a)/R_(g)=221.3 toward 400×10^(-6)isopropanol),fast response rate(less than 10 s),short recovery time,and simultaneously low operating temperature.Also,the ZnO/NiO composite exhibited a wide sensing range(1×10^(-6)-1000×10^(-6))to isopropanol and processed good long-term stability.The experimental results suggested the potential application in fabricating efficient isopropanol sensors using this ZnO/NiO composite.The enhanced isopropanol sensing mech-anism is also discussed in charge transfer between heterojunctions,surface area,and surface defects.
基金supported by the National Natural Science Foundation of China(No.51772310)National Natural Science Foundation of China(No.52222202)+3 种基金Chinese Academy of Sciences Key Research Program of Frontier Sciences(No.QYZDYSSWJSC031)Key Deployment Projects of the Chinese Academy of Sciences(No.ZDRW-CN2019-01)Shanghai Sailing Program(No.21YF1454600)Outstanding Chinese and Foreign Youth Exchange Program of China Association of Science and Technology.
文摘In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infiltration(CVI)process.The graphene framework prepared by 3D printing and frozen self-assembly exhibits a lightweight structure and a perforated conductive network,which extends the transmission path of incident microwaves.The introduced ceramic coatings can effectively tune the impedance matching degree and supply a lossy phase,and the hierarchical structure of the composites enhances the multiple scattering of the incident microwaves.As expected,the 3D-rGO/BN/SiC composites possess an excellent absorbing performance with a minimum reflection loss value of–37.8 dB,and the widest effective absorbing bandwidth(RL<–10 dB)of 5.90 GHz is obtained.The controllable fabrication of composites can provide a guideline for rational design and fabrication of high-performance electromagnetic waves absorbing materials in practical applications.
基金funded by Tsinghua-Toyota Joint Research Fund,National Natural Science Foundation of China(52175274)Tsinghua Precision Medicine Foundation.X.W.thanks the funding support from the National Natural Science Foundation of China(Grant ID:81630064)Beijing Natural Science Foundation(Grant ID:7232129).
文摘Addressing irregular bone defects is a formidable clinical challenge,as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration,resulting in suboptimal healing.This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure(macro-,meso-,and nano-scales)and tempered degradation(microscale),intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs.For the hierarchical structure,at the macroscale,it can feature anatomic geometries for seamless integration with the bone defect;The mesoscale pores are devised with optimized curvature and size,providing an adequate mechanical response as well as promoting cellular proliferation and vascularization,essential for natural bone mimicry;The nanoscale textured surface is enriched with a layered double hydroxide membrane,augmenting bioactivity and osteointegration.Moreover,microscale enhancements involve a duallayer coating of high-temperature oxidized film and hydrotalcite,offering a robust shield against fast degradation.Eventually,this scaffold demonstrates superior geometrical characteristics,load-bearing capacity,and degradation performance,significantly outperforming traditional scaffolds based on in vitro and in vivo assessments,marking a breakthrough in repairing customized bone defects.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金financially supported by the National Natural Science Foundation of China(Nos.52275290 and 51905222)the Research Project of the State Key Laboratory of Mechanical System and Oscillation(No.MSV202419)+2 种基金Major Program of the National Natural Science Foundation of China for Basic Theory and Key Technology of Tri-Co Robots(No.92248301)Opening Project of the Key Laboratory of Bionic Engineering(Ministry of Education),Jilin University(No.KF2023006)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_2091)。
文摘This work proposes a bioinspired hierarchical actuation strategy based on liquid crystal elastomers(LCEs),inspired by the helical topological dynamic adaptation mechanism of plant tendrils,to overcome the bottleneck of precise anisotropic control in LCEs.Mechanically pre-programmed hierarchical LCE structures responsive to near-infrared(NIR)light were fabricated:the oriented constrained actuator achieves asymmetric contraction under NIR irradiation,enabling reversible switching between helix and planar morphologies with multi-terrain grasping capability;the biomimetic vine-like helical actuator,composed of Ag nanowire photothermal layers combined with helical LCE,utilizes temperaturegradient-induced phase transition wave propagation to achieve NIR-controlled climbing motion;the M?bius topology actuator realizes reversible deformation or self-locking states by tuning the twist angle(180°/360°);based on these,a bioinspired koala-like concentric soft robot was constructed,successfully demonstrating tree trunk climbing.This study reveals that artificial helical stretching significantly enhances the molecular chain orientation of LCEs(surpassing uniaxial stretching),reaching up to 1000%pre-strain,and the Ag NWs/LCE/PI(Polyimide)tri-layer structure achieves efficient photothermal-mechanical energy conversion via localized surface plasmon resonance(LSPR).This study provides a new paradigm for soft robotics material design and topological programming,demonstrating the potential for remote operation and adaptive grasping.
基金jointly supported by the National Key Research and Development Programme of China(Nos.2022YFA1404704 and 2020YFA0406104)National Natural Science Foundation of China(Nos.52372197 and 52002168)+2 种基金Excellent Research Programme of Nanjing University(No.ZYJH005)the Fundamental Research Funds for the Central Universities(Nos.021314380184,021314380208,021314380190,021314380140,and 021314380150)State Key Laboratory of New Textile Materials and Advanced Processing Technologies(Wuhan Textile University,No.FZ2022011).
文摘The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial.This review focuses on recent advancements in hierarchical structure design for innovative cooling textiles.Beginning with insights into fundamental heat transfer processes between the human body,textile,and the surroundings,we uncover key control mechanisms.Then the advanced hierarchical structure designs enabling effective radiation,sweat evaporation,conduction management,and integration of cold energy sources for realizing effective human body cooling are systematically summarized.Additionally,we explore multifunctional designs beyond cooling,including switchable cooling-heating and sensing.Finally,we engage in discussions on unifying cooling performance tests and additional multiple requirements to make strides toward practical applications.This review is anticipated to be a valuable resource,providing the scientific and industrial communities with a quick grasp of past advancements,current challenges,and future directions in achieving effective human body cooling.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022MB034)the Development Program Project of the Young Innovation Team of Institutions of Higher Learning in Shandong Province。
文摘Endowing stimuli-responsive materials with micro-nano structures is an intriguing strategy for the fabrication of superwetting surfaces;however,its application is limited by poor chemical/mechanical stability.Herein,a simple and versatile strategy was developed to fabricate durable polymeric superwetting surfaces with photoswitchable wettability on hierarchically structured metallic substrates.Inspired by nature,a novel functional terpolymer incorporating mussel-inspired catechol groups,photoresponsive azobenzene groups,and low-surface-energy fluorine-containing groups was synthesized via solution radical polymerization.The azobenzene-containing terpolymer possesses outstanding photoresponsiveness in both the solution and film states because of the trans-cis isomerization of the azobenzene moieties.After dip-coating with the mussel-inspired azo-copolymer,the as-prepared smart surfaces exhibited a photo-triggered change in wettability between high hydrophobicity and superhydrophilicity.More importantly,these superwetting surfaces with enhanced adhesion properties can tolerate harsh environmental conditions and repeated abrasion tests,thereby demonstrating excellent chemical robustness and mechanical durability.This study paves a new avenue for the convenient and large-scale fabrication of robust smart surfaces that could find widespread potential applications in microfluidic devices,water treatment,and functional coatings.
基金National Natural Science Foundation of China(No.52173261).
文摘SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.
基金National Natural Science Foundation of China,Grant/Award Numbers:52102260,52171211,51972220,61903235,U22A20145Shandong Provincial Natural Science Foundation,Grant/Award Numbers:ZR2020QB069,ZR2022ME051+4 种基金National Key Research and Development Program of China,Grant/Award Number:2022YFB4002004Scientific and Technological Innovation Ability Improvement Project of Minor Enterprises in Shandong Province,Grant/Award Number:2022TSGC1021Announce the List and Take Charge Project in Jinan,Grant/Award Number:202214012Major innovation project for integrating science,education and industry of Qilu University of Technology (Shandong Academy of Sciences),Grant/Award Numbers:2022JBZ01-07,2022PY044China Postdoctoral Science Foundation,Grant/Award Number:2022M711545。
文摘Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.
基金financially supported by the Materials/Parts Technology Development Program(No.RS-202400456324)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)by the National Research Foundation(NRF)of Korea grant(No.RS-2024-00454367)funded by the Ministry of Science and ICT(MSIT,Korea)。
文摘K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require further investigation.In this study,novel N-doped multichannel carbon nanofibers(h-NMCNFs)with hierarchical porous structures were successfully synthesized as efficient cathode hosts for K–Se batteries through the carbonization of two electrospun immiscible polymer nanofibers and subsequent chemical activation.Mesopores originated from the decomposition of the polymer embedded in the carbon nanofibers,and micropores were introduced via KOH activation.During the activation step,hierarchical porous carbon nanofibers with enhanced pore volumes were formed because of the micropores in the carbon nanofibers.Owing to the mesopores that enabled easy access to the electrolyte and the high utilization of chain-like Se within the micropores,the Se-loaded hierarchical porous carbon nanofibers(60 wt%Se)exhibited a high discharge capacity and excellent rate performance.The discharge capacity of the nanofibers at the 1,000th cycle was 210.8 mA.h.g^(-1)at a current density of 0.5C.The capacity retention after the initial activation was 64%.In addition,a discharge capacity of 165 mA.h.g^(-1)was obtained at an extremely high current density of 3.0C.
文摘Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.
基金financially supported by the National Natural Science of Foundation of China(No.52371097)the Shenyang Unveiling and Leading Project,China(No.22-301-1-01)。
文摘The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure construction is thought as a promising route to improve the microwave absorption performance of the materials.In the present work,layer-structured Co-metal-organic frameworks(Co-MOFs)precursors were grown in-situ on the surface of carbon fibers with the hydrothermal method.After annealed at 500℃ under Ar atmosphere,a novel multiscale hierarchical composite(Co@C/CF)was obtained with the support of carbon fibers,keeping the flower-like structure.Scanning electron microscope,transmission electron microscope,X-ray diffraction,Raman,and X-ray photoelectron spectroscopy were performed to analyze the microstructure and composition of the hierarchical structure,and the microwave absorption performance of the Co@C/CF composites were investigated.The results showed that the growth of the flower-like structure on the surface of carbon fiber was closely related to the metal-to-ligand ratio.The optimized Co@C/CF flower-like composites achieved the best reflection loss of−55.7 dB in the low frequency band of 6–8 GHz at the thickness of 2.8 mm,with the corresponding effective absorption bandwidth(EAB)of 2.1 GHz.The EAB of 3.24 GHz was achieved in the high frequency range of 12–16 GHz when the thickness was 1.5 mm.The excellent microwave absorption performance was ascribed to the introduction of magnetic components and the construction of the unique structure.The flower-like structure not only balanced the impedance of the fibers themselves,but also extended the propagation path of the microwave and then increased the multiple reflection losses.This work provides a convenient method for the design and development of wave-absorbing composites with in-situ integrated structure.
基金supported by the National Natural Science Foundation of China(Grant No.52305359)the startup funding from the Huazhong University of Science and Technology,the Opening fund of the State Key Laboratory of Nonlinear Mechanics and Natural Science Foundation of Hubei Province(No.2023AFB141)。
文摘Fabricating damage tolerant porous ceramics with efficient energy absorption and impact-resistant capability has been a challenge because of the brittle nature of ceramic materials.In nature,mineralized tissues or organisms such as cuttlebones and diatoms have evolved with hierarchical porous structures to overcome this difficulty.A bioinspired design of ceramic lattice structure with pores at multiple length scales,ranging from few nanometers to hundreds of micrometers,is proposed in the present work.These ceramic lattices with hierarchical porous structures were successfully fabricated via 3D cryogenic printing.Under quasi-static compressions,the printed ceramic lattices showed unprecedented long plateau strain(∼60%)and a specific energy absorption of∼10 kJ·kg^(−1) with a porosity of∼90%.The resulting energy absorption capability was comparable with most composites and metals,thus overcoming the brittle nature of traditional porous ceramics.This was attributed to the delayed destruction of the lattice structure,as well as the gradual collapse of pores at multiple length scales.Similar trends have also been observed under split Hopkinson pressure bar(SHPB)tests,indicating excellent energy absorption under high strain-rate impacts.The proposed 3D printing technique that produces hierarchical pores was also demonstrated to apply to other functional materials,such as silicon carbide,barium titanate,hydroxyapatite,and even titanium alloy,thus opening up new possibilities for fabricating bioinspired hierarchical porous structures.
基金supported by the National Key Research and Development Program of China(No.2024YFE0100600)the National Natural Science Foundation of China(No.52373303)+1 种基金the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the Fundamental Research Funds for the Central Universities and the Interdisciplinary Joint Research and Development Project of Tongji University(No.2022-4-ZD-01).
文摘Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes to the formation of an electromagnetic(EM)coupling network,enhancing EM properties at a low FL.However,precisely controlling the length of 1D-MMFs to regulate permittivity at low FL poses a challenge.Herein,a novel magnetic field-assisted growth strategy was used to fabricate Co-based fibers with adjustable permittivity and aspect ratios.With a variety of FL changes,centimeter-level Co long fibers(Co-lf)consistently exhibited higher permittivity than Co particles and Co short fibers due to the enhancement of the effective EM coupling.The Co-lf exhibits excellent EMA performance(-54.85 dB,5.8 GHz)at 10 wt.%FL.Meanwhile,heterogeneous interfaces were introduced to increase the interfacial polarization through a fine phosphorylation design,resulting in elevated EMA performances(-51.50 dB,6.6 GHz)at 10 wt.%FL for Co_(2)P/Co long fibers.This study improves the orderliness of the particle arrangement by regulating the length of 1D-MMFs,which affects the behavior of electrons inside the fibers,providing a new perspective for improving the EMA properties of magnetic materials at a low FL.
基金supported by the National Natural Science Foundation of China(Nos.U23A6005,22208112,and 32171721)the National Natural Science Foundation of China(No.22308109)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2024A1515010678)the Fundamental Research Funds for the Central Universities(SCUT:2023ZYGXZR045)the State Key Laboratory of Pulp&Paper Engineering(Nos.2023ZD01,2023C02).
文摘Proton exchange membrane fuel cell(PEMFC)is a promising clean energy source,but its performance and stability are vulnerable to the negative effects of humidity conditions.The gas diffusion substrate(GDS)plays a pivotal role in regulating the moisture and gas transport.The single pore structure of traditionally designed GDS often leads to the pathway competition between moisture and gas,which effects the efficiency of fuel cells.In this study,we report on a hierarchical fibrous paper with tunable hierarchical pores for a sustainable GDS.This design offers gas permeability under wet conditions,by separating the gas pathway from the moisture pathway,thus mitigating their pathway competition.In addition,this paper forms a multi-scale scaffold that absorbs moisture under high humidity conditions and releases it under dry conditions.It is allowed to maintain an optimal internal humidity and further enhances the humidity adaptability.Furthermore,the carbon footprint is only 15.97%,significantly lower than commercial alternatives.This feature makes it a sustainable solution to stabilize PEMFCs under diverse humidity conditions.
基金supported by the National Key Research and Development Program of China(No.2019YFA0110600)the Science and Technology Support Program of Sichuan Province(No.2019YJ0161).
文摘Hierarchical porous structure,which include macropores,minor pores,and micropores in scaffolds,are essential in the multiple biological functions of bone repair and regeneration.In this study,patientcustomized calcium-deficient hydroxyapatite(CDHA)scaffolds with three-level hierarchical porous structure were fabricated by indirect 3D printing technology and particulate leaching method.The sacrificial template scaffolds were fabricated using a photo-curing 3D printer,which provided a prerequisite for the integral structure and interconnected macropores of CDHA scaffolds.Additionally,20 wt%pore former was incorporated into the slurry to enhance the content of smaller pores within the CDHA-2 scaffolds,and then the CDHA-2 scaffolds were sintered to remove the sacrificial template scaffolds and pore former.The obtained CDHA-2 scaffolds exhibited interconnected macropores(300-400μm),minor pores(∼10-100μm),and micropores(<10μm)distributed throughout the scaffolds,which could promote bone tissue ingrowth,increase surface roughness,and enhance protein adsorption of scaffolds.In vitro studies identified that CDHA-2 scaffolds had nanocrystal grains,high specific surface area,and outstanding protein adsorption capacity,which could provide a microenvironment for cell adhesion,spreading,and proliferation.In addition,the murine intramuscular implantation experiment suggested that CDHA-2 scaffolds exhibited excellent osteoinductivity and were superior to traditional BCP ceramics under conditions without the addition of live cells and exogenous growth factors.The rabbit calvarial defect repair results indicated that CDHA-2 scaffolds could enhance in situ bone regeneration.In conclusion,these findings demonstrated that the hierarchical porous structure of CDHA scaffolds was a pivotal factor in modulating osteoinductivity and bone regeneration,and CDHA-2 scaffolds were potential candidates for bone regeneration.