Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel...Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory.展开更多
Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved....Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved. Approach: Design methods were used to develop a conceptual mechanics for the remanufacturing processes that transform particles in the decay processes. This was based on the structures for the photon, electron, antielectron, proton and antineutrino as previously identified as logical necessities for the beta decay process, and represented as a non-local hidden-variable design with discrete fields. Findings: The solution is given in terms of a mechanics that defines the transformation of discrete field structures in particles. The genesis problem is shown to be solvable. The mechanics describes pair production of an electron and antielectron from two initial photons, and subsequent remanufacture of the antielectron into a proton. It is predicted that two antineutrinos would be emitted, which are testable and falsifiable. The theory identifies that the role of the antineutrinos is to remove the antimatter handed field structures. The original electron and proton may bond to form a simple hydrogen atom, or combine via electron capture to form a neutron and hence heavier nuclides. The subsequent preponderance of the matter pathways in the genesis production sequence is also addressed and is explained as domain warfare between the matter and antimatter species. Originality: The concept of remanufacture of antielectrons into protons, with emission of antineutrinos, is novel. Extensions of the theory explain the nuclides. Consequently the theory explains from pair production up to nuclear structure, which is also original.展开更多
CONTEXT The spin of a particle is physically manifest in multiple phenomena. For quantum mechanics (QM), spin is an intrinsic property of a point particle, but an ontological explanation is lacking. In this paper we p...CONTEXT The spin of a particle is physically manifest in multiple phenomena. For quantum mechanics (QM), spin is an intrinsic property of a point particle, but an ontological explanation is lacking. In this paper we propose a physical explanation for spin at the sub-particle level, using a non-local hidden-variable (NLHV) theory. APPROACH Mechanisms for spin were inferred from the Cordus NLHV theory, specifically from theorised structures at the sub-particle level. RESULTS Physical geometry of the particle can explain spin phenomena: polarisation, Pauli exclusion principle (Einstein-Podolsky-Rosen paradox), excited states, and selective spin of neutrino species. A quantitative derivation is provided for electron spin g-factor g = 2, and a qualitative explanation for the anomalous component. IMPLICATIONS NLHV theory offers a candidate route to new physics at the sub-particle level. This also implies philosophically that physical realism may apply to physics at the deeper level below QM. ORIGINALITY The electron g-factor has been derived using sub-particle structures in NLHV theory, without using quantum theory. This is significant as the g-factor is otherwise considered uniquely predicted by QM. Explanations are provided for spin phenomena in terms of physical sub-structures to the particle.展开更多
Context: Derivations for the relativity formulations for the Lorentz are conventionally based on continuum mechanics. Purpose: This paper derives the formulations from a particle perspective. Approach: A non-local hid...Context: Derivations for the relativity formulations for the Lorentz are conventionally based on continuum mechanics. Purpose: This paper derives the formulations from a particle perspective. Approach: A non-local hidden-variable (NLHV) approach is adopted, based on the specific particle structures of the Cordus Theory. Findings: The Lorentz and relativistic Doppler formulations are shown to be derivable from a NLHV particle perspective. Unexpectedly, the equations contain an additional term relating to the difference in the distribution of matter (fabric density) between situations. For a homogenous fabric, which is the assumption of general relativity, the conventional formulations are recovered. Originality: The novel contribution is deriving the relativistic formulation from a NLHV theory. Also novel is the identification of the fabric density as a term in the Lorentz. Implications: It is predicted that inertial frames of reference are only situationally equivalent in the special case where they also have the same fabric density. We find against the cosmological principle with its assumption of homogeneity. The resulting situational theory of relativity has further implications for interpreting gravitational interactions at the galactic scale and larger.展开更多
In “The third speech on the wave mechanics” (1926), E. Schodinger pointed that the Hamilton-Maupertuis principle as a classical starting point of wave mechanics in the definition of generalized coordinate space line...In “The third speech on the wave mechanics” (1926), E. Schodinger pointed that the Hamilton-Maupertuis principle as a classical starting point of wave mechanics in the definition of generalized coordinate space line element, introduced the generalized non-Euclidean geometry, and finally obtained the wave equation including Laplace operator in the generalized non Euclidean geometry line element. At the 1927 meeting of the Prussian Academy of Sciences in Berlin, Albert Einstein read a paper entitled “Does Schodinger’s wave mechanics determines the dynamics of a system’s movement completely or only sence in statistics?”. In this paper, Einstein used the Schodinger equation to obtain a representation of the kinetic energy, and used the non-Euclidean line element of the Configuration space to define the velocity component of a single particle, and return to determinism. But Bothe pointed out that when people considered a system composed of two subsystems, the wave function of the whole system can be decomposed into two simple products of the wave function of the two subsystems, but the hidden variables are dependent on each other. Einstein be-lieved that this was not acceptable, gave up the publication of the paper on the non-European line hidden variables theory. In the long-term controversy with the Copenhagen school, Einstein was convinced that the probability interpretation of the wave function was indispensable because of the incompleteness of quantum mechanics, but not the wave function probability led to the incompleteness of quantum mechanics. Any attempt to seek a complete explanation of quantum mechanics is inevitable to change the current formal system of quantum mechanics.展开更多
文摘Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory.
文摘Problem: The asymmetrical genesis problem concerns why the universe should have an abundance of matter over antimatter. Purpose: This paper shows how the baryogenesis and leptogenesis asymmetries may both be resolved. Approach: Design methods were used to develop a conceptual mechanics for the remanufacturing processes that transform particles in the decay processes. This was based on the structures for the photon, electron, antielectron, proton and antineutrino as previously identified as logical necessities for the beta decay process, and represented as a non-local hidden-variable design with discrete fields. Findings: The solution is given in terms of a mechanics that defines the transformation of discrete field structures in particles. The genesis problem is shown to be solvable. The mechanics describes pair production of an electron and antielectron from two initial photons, and subsequent remanufacture of the antielectron into a proton. It is predicted that two antineutrinos would be emitted, which are testable and falsifiable. The theory identifies that the role of the antineutrinos is to remove the antimatter handed field structures. The original electron and proton may bond to form a simple hydrogen atom, or combine via electron capture to form a neutron and hence heavier nuclides. The subsequent preponderance of the matter pathways in the genesis production sequence is also addressed and is explained as domain warfare between the matter and antimatter species. Originality: The concept of remanufacture of antielectrons into protons, with emission of antineutrinos, is novel. Extensions of the theory explain the nuclides. Consequently the theory explains from pair production up to nuclear structure, which is also original.
文摘CONTEXT The spin of a particle is physically manifest in multiple phenomena. For quantum mechanics (QM), spin is an intrinsic property of a point particle, but an ontological explanation is lacking. In this paper we propose a physical explanation for spin at the sub-particle level, using a non-local hidden-variable (NLHV) theory. APPROACH Mechanisms for spin were inferred from the Cordus NLHV theory, specifically from theorised structures at the sub-particle level. RESULTS Physical geometry of the particle can explain spin phenomena: polarisation, Pauli exclusion principle (Einstein-Podolsky-Rosen paradox), excited states, and selective spin of neutrino species. A quantitative derivation is provided for electron spin g-factor g = 2, and a qualitative explanation for the anomalous component. IMPLICATIONS NLHV theory offers a candidate route to new physics at the sub-particle level. This also implies philosophically that physical realism may apply to physics at the deeper level below QM. ORIGINALITY The electron g-factor has been derived using sub-particle structures in NLHV theory, without using quantum theory. This is significant as the g-factor is otherwise considered uniquely predicted by QM. Explanations are provided for spin phenomena in terms of physical sub-structures to the particle.
文摘Context: Derivations for the relativity formulations for the Lorentz are conventionally based on continuum mechanics. Purpose: This paper derives the formulations from a particle perspective. Approach: A non-local hidden-variable (NLHV) approach is adopted, based on the specific particle structures of the Cordus Theory. Findings: The Lorentz and relativistic Doppler formulations are shown to be derivable from a NLHV particle perspective. Unexpectedly, the equations contain an additional term relating to the difference in the distribution of matter (fabric density) between situations. For a homogenous fabric, which is the assumption of general relativity, the conventional formulations are recovered. Originality: The novel contribution is deriving the relativistic formulation from a NLHV theory. Also novel is the identification of the fabric density as a term in the Lorentz. Implications: It is predicted that inertial frames of reference are only situationally equivalent in the special case where they also have the same fabric density. We find against the cosmological principle with its assumption of homogeneity. The resulting situational theory of relativity has further implications for interpreting gravitational interactions at the galactic scale and larger.
文摘In “The third speech on the wave mechanics” (1926), E. Schodinger pointed that the Hamilton-Maupertuis principle as a classical starting point of wave mechanics in the definition of generalized coordinate space line element, introduced the generalized non-Euclidean geometry, and finally obtained the wave equation including Laplace operator in the generalized non Euclidean geometry line element. At the 1927 meeting of the Prussian Academy of Sciences in Berlin, Albert Einstein read a paper entitled “Does Schodinger’s wave mechanics determines the dynamics of a system’s movement completely or only sence in statistics?”. In this paper, Einstein used the Schodinger equation to obtain a representation of the kinetic energy, and used the non-Euclidean line element of the Configuration space to define the velocity component of a single particle, and return to determinism. But Bothe pointed out that when people considered a system composed of two subsystems, the wave function of the whole system can be decomposed into two simple products of the wave function of the two subsystems, but the hidden variables are dependent on each other. Einstein be-lieved that this was not acceptable, gave up the publication of the paper on the non-European line hidden variables theory. In the long-term controversy with the Copenhagen school, Einstein was convinced that the probability interpretation of the wave function was indispensable because of the incompleteness of quantum mechanics, but not the wave function probability led to the incompleteness of quantum mechanics. Any attempt to seek a complete explanation of quantum mechanics is inevitable to change the current formal system of quantum mechanics.