期刊文献+
共找到1,142篇文章
< 1 2 58 >
每页显示 20 50 100
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:3
1
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 Support Vector machine Regression(SVR) non-linear radiometric transforming relation Relative Radiometric normalization(RRN) multi-source data
原文传递
Optical-Elevation Data Co-Registration and Classification-Based Height Normalization for Building Detection in Stereo VHR Images 被引量:1
2
作者 Alaeldin Suliman Yun Zhang 《Advances in Remote Sensing》 2017年第2期103-119,共17页
Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable dete... Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images. 展开更多
关键词 Building Detection Very High Resolution Images Optical-Elevation data CO-REGISTRATION Classification-Based Height normalization
暂未订购
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
3
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
在线阅读 下载PDF
A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data 被引量:101
4
作者 Wang Wanyin Pan Yu Qiu Zhiyun 《Applied Geophysics》 SCIE CSCD 2009年第3期226-233,299,共9页
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati... Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology. 展开更多
关键词 potential field data edge recognition edge enhancement total horizontal derivative normalized vertical derivative
在线阅读 下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
5
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY normalization SUBSPACE NPsim
在线阅读 下载PDF
An Evolutionary Normalization Algorithm for Signed Floating-Point Multiply-Accumulate Operation
6
作者 Rajkumar Sarma Cherry Bhargava Ketan Kotecha 《Computers, Materials & Continua》 SCIE EI 2022年第7期481-495,共15页
In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier ... In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors. 展开更多
关键词 data normalization cadence virtuoso signed-floating-point MAC evolutionary optimized algorithm block enabling clock gating
在线阅读 下载PDF
Performance Evaluation of Quicksort with GPU Dynamic Parallelism for Gene-Expression Quantile Normalization
7
作者 Roberto Pinto Souto Carla Osthoff +2 位作者 Douglas Augusto Oswaldo Trelles Ana Tereza Ribeiro de Vasconcelos 《通讯和计算机(中英文版)》 2013年第12期1522-1528,共7页
关键词 快速排序算法 基因表达数据 并行实现 GPU 绩效评估 位数 现代分子生物学 寡核苷酸微阵列
在线阅读 下载PDF
Bayesian Inference of Spatially Correlated Binary Data Using Skew-Normal Latent Variables with Application in Tooth Caries Analysis
8
作者 Solaiman Afroughi 《Open Journal of Statistics》 2015年第2期127-139,共13页
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog... The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data. 展开更多
关键词 Spatial data LATENT Variable Autologistic Model SKEW-normal Distribution BAYESIAN INFERENCE TOOTH CARIES
暂未订购
基于多特征筛选的蒙皮铣削辅助线提取方法研究
9
作者 纪俐 范家雨 +2 位作者 万井明 于国栋 韩文杰 《航空制造技术》 北大核心 2025年第13期32-39,共8页
为提高蒙皮的铣削质量,满足蒙皮装配时对缝间隙的精度要求,本文提出一种基于多特征筛选的飞机蒙皮铣削辅助线提取方法。首先,采用双边滤波对采集到的点云数据进行预处理;随后,运用多种特征的分层搜索结构搜索边界点,利用空间切线连续性... 为提高蒙皮的铣削质量,满足蒙皮装配时对缝间隙的精度要求,本文提出一种基于多特征筛选的飞机蒙皮铣削辅助线提取方法。首先,采用双边滤波对采集到的点云数据进行预处理;随后,运用多种特征的分层搜索结构搜索边界点,利用空间切线连续性特征筛选出点云边界点的主干部分;接着,借助优化的局部表面标准差特征对其余点再次搜索,将结果合并以获取全部边界点;最后,通过各向异性优化算法将带状分布的散乱边界点收缩成线形。试验结果表明,该方法检测到的边界点精确率可达0.95,误差在0.3 mm以内。将本文方法获取的边界点作为辅助线进行蒙皮工件加工,拼接后的对缝间隙平均值小于0.4 mm。 展开更多
关键词 点云数据 局部特征描述子 边界点提取 分层搜索 法向量平滑
在线阅读 下载PDF
区间数据偏度系数的估计
10
作者 赵志文 臧嘉琦 《佳木斯大学学报(自然科学版)》 2025年第9期175-177,共3页
文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度... 文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度系数的矩估计量,同时证明了该估计量的相合性和渐近正态性.为验证所提方法的有效性,设计了蒙特卡洛模拟实验,利用Matlab生成不同分布下的区间数据,研究结果表明,该估计量具有较小的均方误差. 展开更多
关键词 区间数据 偏度系数 矩估计 渐近正态性
在线阅读 下载PDF
基于批归一化卷积神经网络算法的图像分类识别方法研究
11
作者 谢志明 谷芳 《软件工程》 2025年第5期21-26,共6页
为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。... 为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。该方法首先对数据集进行数据增强和边界填充处理,其次对典型的CNN(Convolutional Neural Networks)网络结构进行改进,移除了卷积层组中的池化层,仅保留了卷积层和BN(Batch Normalization)层,并适量增加卷积层组。为了验证模型的有效性和准确性,设计了6组不同的神经网络结构对模型进行训练。实验结果表明,在相同训练周期数下,推荐使用的model-6模型表现最佳,测试准确率高达90.17%,突破了长期以来经典CNN在CIFAR-10数据集上难于达到90%准确率的瓶颈,为图像分类识别提供了新的解决方案和模型参考。 展开更多
关键词 图像分类识别 卷积神经网络 批归一化 数据增强 边界填充
在线阅读 下载PDF
航空重力异常数据稳定高精度向下延拓方法研究
12
作者 柯宝贵 赵予菲 +2 位作者 徐凡凡 赵翠 李泰航 《地球与行星物理论评(中英文)》 2025年第3期264-277,共14页
航空重力异常向下延拓的本质是求解第一类Fredholm方程,属于不适定性的问题.稳定高精度向下延拓方法一直以来都是该领域的研究热点.为抑制边缘效应和提升计算效率,分别对所用数据进行扩边和快速傅里叶变换处理.为增大向下延拓距离、提... 航空重力异常向下延拓的本质是求解第一类Fredholm方程,属于不适定性的问题.稳定高精度向下延拓方法一直以来都是该领域的研究热点.为抑制边缘效应和提升计算效率,分别对所用数据进行扩边和快速傅里叶变换处理.为增大向下延拓距离、提高稳定性和延拓精度,利用模拟重力异常数据和实测航空重力数据对比分析了积分迭代法、Tikhonov正则化迭代法、Barzilai-Borwein法、迭代最小二乘法和半迭代方法、改进的共轭梯度法向残差法等六种向下延拓方法.结果表明:在数据没有噪声的理想情况下,Barzilai-Borwein法的收敛速度最快,且初始延拓均方误差值低,延拓精度高,优势明显.迭代最小二乘法不够稳定.Tikhonov正则化迭代方法在达到延拓稳定前,经历了误差增加的状态,且初始均方误差值较高,而其余的几种方法延拓效果类似较为一般.在模拟数据中添加噪声后,改进的共轭梯度法向残差法,对噪声的抑制效应最好.且该方法在实际数据向下延拓的过程中,能够实现稳定向下延拓,延拓精度优于其他五种延拓方法. 展开更多
关键词 航空重力数据 向下延拓 频率域 共轭梯度法向残差法 积分迭代法
在线阅读 下载PDF
高能光源吸收器轮廓度误差评定方法研究
13
作者 韩圆颖 董岚 +12 位作者 王铜 卢尚 闫路平 张露彦 刘晓阳 闫皓月 门玲鸰 王小龙 李波 梁静 马娜 何振强 柯志勇 《计量学报》 北大核心 2025年第9期1324-1330,共7页
对高能同步辐射光源储存环光子吸收器的轮廓度误差评定方法进行了研究,选取一种合适的数据配准方法来实现轮廓度误差的高精度求解。利用采样点归一化方法和模型匹配方法,对56个光子吸收器在三坐标测量机下的实测数据进行处理,实现设计... 对高能同步辐射光源储存环光子吸收器的轮廓度误差评定方法进行了研究,选取一种合适的数据配准方法来实现轮廓度误差的高精度求解。利用采样点归一化方法和模型匹配方法,对56个光子吸收器在三坐标测量机下的实测数据进行处理,实现设计基准与测量基准的统一,消除位置误差,得到轮廓度误差e_p值,并对2种方法的可靠性进行了分析。结果表明模型匹配方法的轮廓度误差评定精度明显优于采样点归一化方法,且吸收器加工精度越差,2种方法下的轮廓度值差距越大;当吸收器加工精度较高时,即实测和理论点集间拟合偏差在0.1 mm之内,2种方法下的轮廓度值差值在0.02 mm之内。 展开更多
关键词 几何量计量 光子吸收器 三坐标测量机 轮廓度误差 归一化方法 模型匹配方法 数据配准
在线阅读 下载PDF
基于改进生成对抗网络的面瘫图像生成
14
作者 任鹏宙 李新华 刘鑫 《太原科技大学学报》 2025年第4期327-333,共7页
针对目前面瘫图像公开数据集较少,患者样本分布不均衡,样本泛化性差等问题,提出一种基于改进生成对抗网络的面瘫图像生成方法。首先,构建融合自注意力模块的生成模型和判别模型,增强模型对全局输入时间相关性的学习能力;其次,使用满足Li... 针对目前面瘫图像公开数据集较少,患者样本分布不均衡,样本泛化性差等问题,提出一种基于改进生成对抗网络的面瘫图像生成方法。首先,构建融合自注意力模块的生成模型和判别模型,增强模型对全局输入时间相关性的学习能力;其次,使用满足Lipschitz约束条件的谱归一化来解决模型训练过程不稳定的问题;最后,使用一种基于模型、非采样和硬约束条件的梯度归一化方法约束判别模型的训练,以解决由于梯度陡峭引发的模式坍塌的问题。实验结果表明,所提算法生成了纹理清晰的高质量面瘫图像,可以有效扩充数据集样本。 展开更多
关键词 生成对抗网络 数据增强 谱归一化 梯度归一化 面瘫
在线阅读 下载PDF
多卫星数据反射率标准化后重建15 m分辨率作物植被指数时间序列
15
作者 敖洋钎 孙亮 《自然资源遥感》 北大核心 2025年第5期206-215,共10页
植被指数的变化在一定程度上可以反映所在区域植被覆盖变化及生长情况,通过监测植被指数时间序列的变化对于当地农业管理具有重要意义。现有的植被指数时间序列重建方法存在数据源输入单一、重建结果空间分辨率低等问题。为此,该文提出... 植被指数的变化在一定程度上可以反映所在区域植被覆盖变化及生长情况,通过监测植被指数时间序列的变化对于当地农业管理具有重要意义。现有的植被指数时间序列重建方法存在数据源输入单一、重建结果空间分辨率低等问题。为此,该文提出一种融合卫星数据标准化方法及作物参考曲线法的植被指数时间序列重建方法,重建研究区域冬小麦2021年的高时空分辨率的归一化植被指数(normalized differential vegetation index,NDVI)及增强型植被指数(enhanced vegetation index,EVI)时间序列。结果表明:①反射率标准化后在红光、绿光、红外及近红外波段,GF-1卫星与VIIRS地表反射率数据决定系数(coefficient of determination,R2)大部分提高0.05,少部分提高超过了0.1。均方根误差(root mean square error,RMSE)降低,大部分RMSE降低了0.01,相对均方根误差(relative root mean square error,rRMSE)降低幅度在2%左右。GF-6卫星大部分R2提高了约0.12,RMSE大部分减小了0.03,rRMSE减小幅度普遍在3%~4%之间。Sentinel-2卫星R2整体提升约0.05,RMSE及rRMSE的降低大部分在0.001及2%左右。②重建的研究区内高分辨植被指数时间序列精度评价结果显示,NDVI时间序列重建结果在验证时期均有较高的R2,大多数验证影像R2达到0.5及以上;RMSE在所有的验证时期均小于0.1。相对误差(relative error,RE)在绝大部分情况下小于15%,仅有1景验证影像RE达到18%。EVI时间序列重建结果同样具有较高的R2,在验证影像中有5景影像的R2不低于0.44,大部分影像RMSE及rRMSE的值分别小于0.15及20%。 展开更多
关键词 作物参考曲线 反射率标准化 植被指数 时间序列 数据重建
在线阅读 下载PDF
非参数固定效应Panel Data模型的分位数回归推断 被引量:1
16
作者 吕秀梅 《统计与信息论坛》 CSSCI 2012年第6期28-32,共5页
利用分位数回归方法,讨论了非参数固定效应Panel Data模型的估计和检验问题,得到了参数估计的渐近正态性及收敛速度。同时,建立一个秩得分(rank score)统计量来检验模型的固定效应,并证明了这个统计量渐近服从标准正态分布。
关键词 分位数回归 渐近正态 固定效应Panel data模型
在线阅读 下载PDF
一种高效检测道路物体的强拓展性特征提取网络
17
作者 谢磊磊 李正 朱凤华 《微电子学与计算机》 2025年第7期30-40,共11页
在目标检测任务中,空间金字塔网络是多尺度特征融合的常用方法。但其在不同尺度的特征映射上执行多级池化操作来生成固定大小的特征图,对于目标的空间关系和上下文信息缺乏有效利用,且无法根据需求进行卷积尺寸的适应性调整,造成计算资... 在目标检测任务中,空间金字塔网络是多尺度特征融合的常用方法。但其在不同尺度的特征映射上执行多级池化操作来生成固定大小的特征图,对于目标的空间关系和上下文信息缺乏有效利用,且无法根据需求进行卷积尺寸的适应性调整,造成计算资源浪费。探索了一种通过使用准则化卷积单元EFConv(Strongly Expandable Feature Convolution Units)构建快速准确的特征提取模块的方案。提出了一种强拓展性特征提取网络SEFE(Strongly Expandable Feature Extraction Networks)模块。该模块通过降低内部协变量偏移ICS(Internal Covariate Shift),引入缩放参数和偏移参数,改变膨胀策略和采用分组卷积,可以有效地处理空间层次信息并避免计算负担的增加,增强了网络对不同尺度特征的区分能力。进一步将SEFE模块置换到YOLO多个版本的主干部位,构建SEFE Net特征提取器。在基准数据集BDD100K上进行实验,结果表明:SEFE Net面对多类别目标检测任务时检测效果比原模型提升了1.3%,且平衡了计算量。 展开更多
关键词 空间金字塔网络 数据归一化 目标检测 卷积膨胀率
在线阅读 下载PDF
基于SAE的工程物探数据融合方法
18
作者 钟晗 刘金鹏 +2 位作者 王志豪 胡晓磊 赵璇 《河北水利电力学院学报》 2025年第3期37-40,52,共5页
单一物探方法在解释时不可避免地存在多解性,尤其是在复杂地质条件区。通常对同一测线不同方法的数据分别解释,再基于解释成果,综合分析,相互佐证,是一种简单的组合分析法。虽然考虑了不同方法的数据特征,但未能从数据层级挖掘其中更深... 单一物探方法在解释时不可避免地存在多解性,尤其是在复杂地质条件区。通常对同一测线不同方法的数据分别解释,再基于解释成果,综合分析,相互佐证,是一种简单的组合分析法。虽然考虑了不同方法的数据特征,但未能从数据层级挖掘其中更深层次的特征,解释成果是多个数据剖面,显示也不直观。为此,文中提出一种基于稀疏自编码器(Sparse Auto Encoders,SAE)的多方法工程物探数据融合方法。SAE是一种深度网络算法,通过不断学习,自动挖掘蕴含在数据中的深层次特征。融合数据兼备了多种物探数据中蕴含的物性参数特征,充分挖掘了数据中的地质信息,有效降低了解释的多解性,并能做到更直观地显示,可以更加全面地反映地质异常体的特征。 展开更多
关键词 稀疏自编码器 归一化处理 数据融合 综合解释
在线阅读 下载PDF
基于深度学习的单源域泛化方法研究
19
作者 郝宇航 梁建安 +1 位作者 王莹 陈力荣 《网络新媒体技术》 2025年第5期12-20,共9页
在单源域泛化中,往往面临着训练数据单一、缺少新领域数据的问题。现有的单源域泛化模型,大部分是在训练过程中引入数据增强技术来生成多样化的训练样本,以提升模型在未知领域的泛化能力。然而,这样的数据增强技术有时会失效。因此,提... 在单源域泛化中,往往面临着训练数据单一、缺少新领域数据的问题。现有的单源域泛化模型,大部分是在训练过程中引入数据增强技术来生成多样化的训练样本,以提升模型在未知领域的泛化能力。然而,这样的数据增强技术有时会失效。因此,提出一种基于深度学习的单源域泛化方法,该方法不仅引入数据增强技术,而且对网络结构进行改进。首先,该方法在数据增强阶段引入了风格归一化和恢复模块,以生成更为丰富多样的训练数据;其次,采用多尺度特征提取与融合技术,提取涵盖不同视野域的多尺度信息;最后,采取联合注意力特征融合策略,以增强特征提取过程中通道与空间位置之间的相互依赖性。实验结果表明,本文方法在单源域泛化领域中均优于现有方法。 展开更多
关键词 领域泛化 数据增强 未知领域 风格归一化和恢复 多尺度 注意力
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部