Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and p...Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and particle swarm optimization(PSO) method,we predict a new 2 D stable material(HfNZ monolayer) with the global minimum of 2 D space.The HfNZ monolayer possesses direct band gap(~1.46 eV) and it is predicted to have high carrier mobilities(~103 cm2·V-1·s-1)from deformation potential theory.The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions.In addition,the newly predicted HfN2 monolayer possesses good thermal,dynamical,and mechanical stabilities,which are verified by ab initio molecular dynamics simulations,phonon dispersion and elastic constants.These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.展开更多
基金Project supported by the National Natural Science Foundation(Grant No.U1404108)the Innovative Talents of Universities in Henan Province of China(Grant No.17HASTIT013)+1 种基金the Basic and Frontier Technology Research Program of Henan Province of China(Grant No.162300410056)the Key Scientific Research Projects of Higher Institutions in Henan Province of China(Grant No.19A140018).
文摘Searching for two-dimensional(2 D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications.Using the first principles calculations and particle swarm optimization(PSO) method,we predict a new 2 D stable material(HfNZ monolayer) with the global minimum of 2 D space.The HfNZ monolayer possesses direct band gap(~1.46 eV) and it is predicted to have high carrier mobilities(~103 cm2·V-1·s-1)from deformation potential theory.The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions.In addition,the newly predicted HfN2 monolayer possesses good thermal,dynamical,and mechanical stabilities,which are verified by ab initio molecular dynamics simulations,phonon dispersion and elastic constants.These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.