In this study,the fission properties of^(180)Hg were investigated based on Skyrme density functional theory.The impact of the high-order hexadecapole moment(q_(40))was observed at large deformations.With the q_(40)con...In this study,the fission properties of^(180)Hg were investigated based on Skyrme density functional theory.The impact of the high-order hexadecapole moment(q_(40))was observed at large deformations.With the q_(40)constraint,smooth and continuous potential energy surfaces could be obtained.In particular,the hexadecapole moment constraint is essential for obtaining appropriate scission configurations.The static fission path based on the PES supports the asymmetric fission of^(180)Hg.The asymmetric distribution of the fission yields of^(180)Hg was reproduced by the time-dependent generator coordinate method and agreed well with the experimental data.展开更多
The structure properties for even–even nuclei around^(230)U,located on the hexadecapoledeformation island,are investigated using the potential-energy-surface calculation within the framework of the macroscopic-micros...The structure properties for even–even nuclei around^(230)U,located on the hexadecapoledeformation island,are investigated using the potential-energy-surface calculation within the framework of the macroscopic-microscopic model.The impact of different deformation degrees of freedom(including axial and nonaxial quadrupole and hexadecapole deformations)on total energy,shell,and pairing contributions is analyzed,based on the projected energy maps and curves.The single-particle structure is presented and briefly discussed.To a large extent,a much better agreement with experimental data and other theoretical results is obtained if the hexadecapole deformations,especially the axial one,are taken into account.These results could provide useful insights into understanding the effects of different quadrupole and hexadecapole deformations.展开更多
Based on the potential-energy-surface calculation,the impact of different deformation degrees of freedom on a single-particle structure and binding energies in nuclei around^(152)Nd,located on one of the hexadecapole-...Based on the potential-energy-surface calculation,the impact of different deformation degrees of freedom on a single-particle structure and binding energies in nuclei around^(152)Nd,located on one of the hexadecapole-deformation islands,is analyzed in a multi-dimensional deformation space.Various energy maps,curves and tables are presented to indicate nuclear properties.The calculated equilibrium deformations and binding energies with different potential parameters are compared with experimental data and other theories.It is found that the inclusion of the hexadecapole deformations,especially the axial one,can improve the theoretical description of both nuclear shapes and masses.In addition,our calculated potential-energy curve shows that a critical deformation-point,β_(2)≈0.4,exists—the triaxial(hexadecapole)deformation effect can be neglectable but the hexadecapole(triaxial)one plays an important role before(after)such a critical point.展开更多
Influence of the effective fermion hexadecapole force newly incorporated in a microscopic sdgIBM-1 on spectra, reduced E2 and E4 transition matrix elements (T(E2)s and T(E4)s) in the even-even platinum isotopes (A = 1...Influence of the effective fermion hexadecapole force newly incorporated in a microscopic sdgIBM-1 on spectra, reduced E2 and E4 transition matrix elements (T(E2)s and T(E4)s) in the even-even platinum isotopes (A = 192,194,196,198) is investigated in terms of numerical calculations. It is found that the introduced interaction causes only limited modification to the spectrum and T(E2)s, apart from a few exceptions. However, it plays an essential role in describing E4 transitions. Thus in the case that the interaction is incorporated with certain strength, a reasonable description of all the E4 transitions in the platinum isotopes is reached in the microscopic sdgIBM-1 in comparing both to experimental data and the results calculated in phenomenological boson model.展开更多
基金supported by the National Key R and D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081 and U1732138)Continuous-support Basic Scientific Research Project.
文摘In this study,the fission properties of^(180)Hg were investigated based on Skyrme density functional theory.The impact of the high-order hexadecapole moment(q_(40))was observed at large deformations.With the q_(40)constraint,smooth and continuous potential energy surfaces could be obtained.In particular,the hexadecapole moment constraint is essential for obtaining appropriate scission configurations.The static fission path based on the PES supports the asymmetric fission of^(180)Hg.The asymmetric distribution of the fission yields of^(180)Hg was reproduced by the time-dependent generator coordinate method and agreed well with the experimental data.
基金the National Natural Science Foundation of China(No.11975209,No.U2032211,and No.12075287)the Physics Research and Development Program of Zhengzhou University(No.32410017)the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province(No.2017GGJS008)
文摘The structure properties for even–even nuclei around^(230)U,located on the hexadecapoledeformation island,are investigated using the potential-energy-surface calculation within the framework of the macroscopic-microscopic model.The impact of different deformation degrees of freedom(including axial and nonaxial quadrupole and hexadecapole deformations)on total energy,shell,and pairing contributions is analyzed,based on the projected energy maps and curves.The single-particle structure is presented and briefly discussed.To a large extent,a much better agreement with experimental data and other theoretical results is obtained if the hexadecapole deformations,especially the axial one,are taken into account.These results could provide useful insights into understanding the effects of different quadrupole and hexadecapole deformations.
基金supported by the National Natural Science Foundation of China(No.11975209,No.U2032211,No.12075287)the Physics Research and Development Program of Zhengzhou University(No.32410017)the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province(No.2017GGJS008)。
文摘Based on the potential-energy-surface calculation,the impact of different deformation degrees of freedom on a single-particle structure and binding energies in nuclei around^(152)Nd,located on one of the hexadecapole-deformation islands,is analyzed in a multi-dimensional deformation space.Various energy maps,curves and tables are presented to indicate nuclear properties.The calculated equilibrium deformations and binding energies with different potential parameters are compared with experimental data and other theories.It is found that the inclusion of the hexadecapole deformations,especially the axial one,can improve the theoretical description of both nuclear shapes and masses.In addition,our calculated potential-energy curve shows that a critical deformation-point,β_(2)≈0.4,exists—the triaxial(hexadecapole)deformation effect can be neglectable but the hexadecapole(triaxial)one plays an important role before(after)such a critical point.
文摘Influence of the effective fermion hexadecapole force newly incorporated in a microscopic sdgIBM-1 on spectra, reduced E2 and E4 transition matrix elements (T(E2)s and T(E4)s) in the even-even platinum isotopes (A = 192,194,196,198) is investigated in terms of numerical calculations. It is found that the introduced interaction causes only limited modification to the spectrum and T(E2)s, apart from a few exceptions. However, it plays an essential role in describing E4 transitions. Thus in the case that the interaction is incorporated with certain strength, a reasonable description of all the E4 transitions in the platinum isotopes is reached in the microscopic sdgIBM-1 in comparing both to experimental data and the results calculated in phenomenological boson model.