期刊文献+
共找到460篇文章
< 1 2 23 >
每页显示 20 50 100
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
1
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
Artificial Circulation System Algorithm:A Novel Bio-Inspired Algorithm
2
作者 NerminÖzcan Semih Utku Tolga Berber 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期635-663,共29页
Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System A... Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods. 展开更多
关键词 BIO-INSPIRED EVOLUTIONARY heuristic METAheuristic OPTIMIZATION
在线阅读 下载PDF
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
3
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 HYPER-heuristicS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
在线阅读 下载PDF
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
4
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
Data-based neural controls for an unknown continuous-time multi-input system with integral reinforcement
5
作者 Yongfeng Lv Jun Zhao +1 位作者 Wan Zhang Huimin Chang 《Control Theory and Technology》 2025年第1期118-130,共13页
Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.Ho... Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study. 展开更多
关键词 Adaptive dynamic programming Integral reinforcement Neural networks heuristic dynamic programming Multi-input system
原文传递
Two-phase heuristic for vehicle routing problem with drones in multi-trip and multi-drop mode
6
作者 MA Huawei HU Xiaoxuan ZHU Waiming 《Journal of Systems Engineering and Electronics》 2025年第4期1024-1036,共13页
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult... As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm. 展开更多
关键词 vehicle routing problem with drones(VRPD) mixed integer program parallel route construction heuristic(PRCH) adaptive neighbor searching heuristic(ANSH).
在线阅读 下载PDF
A novel heuristic pathfinding algorithm for 3D security modeling and vulnerability assessment
7
作者 Jun Yang Yue-Ming Hong +2 位作者 Yu-Ming Lv Hao-Ming Ma Wen-Lin Wang 《Nuclear Science and Techniques》 2025年第5期152-166,共15页
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner... Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications. 展开更多
关键词 Physical protection system 3D modeling and simulation Vulnerability assessment A^(*)heuristic Pathfinding Dijkstra algorithm
在线阅读 下载PDF
Oilfield sustainability and management:An optimization model for the reconstruction of oil and gas gathering systems based on potential location mining
8
作者 Jie Chen Wei Wang +2 位作者 Wen-Yuan Sun Dong Li Yu-Bo Jiao 《Petroleum Science》 2025年第2期935-955,共21页
The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable deve... The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction. 展开更多
关键词 Oilfield reconstruction Sustainable development Optimization model Potential location3-phase heuristic model
原文传递
Heuristic Weight Initialization for Transfer Learning in Classification Problems
9
作者 Musulmon Lolaev Anand Paul Jeonghong Kim 《Computers, Materials & Continua》 2025年第11期4155-4171,共17页
Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network... Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models.Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully.Most existing initialization methods mainly focus on gradient flow-related problems,such as gradient vanishing or exploding,or other existing approaches that require extra models that do not consider our setting,which is more practical.To address these problems,we suggest employing gradient-free heuristic methods to initialize the weights of the final new-added fully connected layer in neural networks froma small set of training data with fewer classes.The approach relies on partitioning the output values from pre-trained models for a small set into two separate intervals determined by the targets.This process is framed as an optimization problem for each output neuron and class.The optimization selects the highest values as weights,considering their direction towards the respective classes.Furthermore,empirical 145 experiments involve a variety of neural networkmodels tested acrossmultiple benchmarks and domains,occasionally yielding accuracies comparable to those achieved with gradient descent methods by using only small subsets. 展开更多
关键词 Transfer learning gradient descent heuristicS gradient free
在线阅读 下载PDF
Data-Driven Heuristic Assisted Memetic Algorithm for Efficient Inter-Satellite Link Scheduling in the BeiDou Navigation Satellite System 被引量:7
10
作者 Yonghao Du Ling Wang +2 位作者 Lining Xing Jungang Yan Mengsi Cai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1800-1816,共17页
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be... Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications. 展开更多
关键词 BeiDou Navigation Satellite system(BDS) data-driven heuristic inter-satellite link(ISL)scheduling memetic algorithm METAheuristic quick-response
在线阅读 下载PDF
Improved methods for scheduling flexible manufacturing systems based on Petri nets and heuristic search 被引量:2
11
作者 Bo HUANG Yamin SUN 《控制理论与应用(英文版)》 EI 2005年第2期139-144,共6页
This paper proposes and evaluates two improved Petri net (PN)-based hybrid search strategies and their applications to flexible manufacturing system (FMS) scheduling. The algorithms proposed in some previous paper... This paper proposes and evaluates two improved Petri net (PN)-based hybrid search strategies and their applications to flexible manufacturing system (FMS) scheduling. The algorithms proposed in some previous papers, which combine PN simulation capabilities with A* heuristic search within the PN reachability graph,may not find an optimum solution even with an admissible heuristic function. To remedy the defects an improved heuristic search strategy is proposed, which adopts a different method for selecting the promising markings and reserves the admissibility of the algorithm. To speed up the search process, another algorithm is also proposed which invokes faster termination conditions and still guarantees that the solution found is optimum. The scheduling results are compared through a simple FMS between our algorithms and the previous methods. They are also applied and evaluated in a set of randomly-generated FMSs with such characteristics as multiple resources and alternative routes. 展开更多
关键词 heuristic search ADMISSIBILITY Petri net SCHEDULING
在线阅读 下载PDF
Flower Pollination Heuristics for Nonlinear Active Noise Control Systems 被引量:1
12
作者 Wasim Ullah Khan Yigang He +3 位作者 Muhammad Asif Zahoor Raja Naveed Ishtiaq Chaudhary Zeshan Aslam Khan Syed Muslim Shah 《Computers, Materials & Continua》 SCIE EI 2021年第4期815-834,共20页
In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is ... In this paper,a novel design of the flower pollination algorithm is presented for model identification problems in nonlinear active noise control systems.The recently introduced flower pollination based heuristics is implemented to minimize the mean squared error based merit/cost function representing the scenarios of active noise control system with linear/nonlinear and primary/secondary paths based on the sinusoidal signal,random and complex random signals as noise interferences.The flower pollination heuristics based active noise controllers are formulated through exploitation of nonlinear filtering with Volterra series.The comparative study on statistical observations in terms of accuracy,convergence and complexity measures demonstrates that the proposed meta-heuristic of flower pollination algorithm is reliable,accurate,stable as well as robust for active noise control system.The accuracy of the proposed nature inspired computing of flower pollination is in good agreement with the state of the art counterpart solvers based on variants of genetic algorithms,particle swarm optimization,backtracking search optimization algorithm,fireworks optimization algorithm along with their memetic combination with local search methodologies.Moreover,the central tendency and variation based statistical indices further validate the consistency and reliability of the proposed scheme mimic the mathematical model for the process of flower pollination systems. 展开更多
关键词 Active noise control computational heuristics volterra filtering flower pollination algorithm
在线阅读 下载PDF
HEURISTIC MODELING FOR A DYNAMIC AND GOAL PROGRAMMING IN PRODUCTION PLANNING OF CONTINUOUS MANUFACTURING SYSTEMS 被引量:2
13
作者 JAHAN A ABDOLSHAH M 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期110-113,共4页
At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive... At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved. 展开更多
关键词 heuristic model Dynamic programming Goal programming production planning
在线阅读 下载PDF
A Multi-stage Heuristic Algorithm for Matching Problem in the Modified Miniload Automated Storage and Retrieval System of E-commerce 被引量:2
14
作者 WANG Wenrui WU Yaohua WU Yingying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期641-648,共8页
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking d... E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center. 展开更多
关键词 e-commerce modified miniload automated storage/retrieval system matching problem multi-stage heuristic algorithm
在线阅读 下载PDF
A Sensitivity-Based Heuristic Search for Constrained Optimization in Complex Systems
15
作者 Gao Peiwang Ma Xiaoqing (Department of Mechanical and Electronic Engineering, Beijing Institute of Technology, 100081, P. R. China)(Received September 4, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期75-80,共6页
On the basis of sensitivity analysis, an algorithm presented in this paper does a multi dimensional heuristic search for the optimal solution of complex systems in the feasible intervals of components reliability. Com... On the basis of sensitivity analysis, an algorithm presented in this paper does a multi dimensional heuristic search for the optimal solution of complex systems in the feasible intervals of components reliability. Compared with some existing methods, the algorithm both has heuristic speciality that it is modest and easy to implement, and obtains the optimal solution as exact methods do. 展开更多
关键词 COMPLEX systemS systemS RELIABILITY Sensitivity heuristic methods.
在线阅读 下载PDF
Heuristic dynamic programming-based learning control for discrete-time disturbed multi-agent systems
16
作者 Yao Zhang Chaoxu Mu +1 位作者 Yong Zhang Yanghe Feng 《Control Theory and Technology》 EI CSCD 2021年第3期339-353,共15页
Owing to extensive applications in many fields,the synchronization problem has been widely investigated in multi-agent systems.The synchronization for multi-agent systems is a pivotal issue,which means that under the ... Owing to extensive applications in many fields,the synchronization problem has been widely investigated in multi-agent systems.The synchronization for multi-agent systems is a pivotal issue,which means that under the designed control policy,the output of systems or the state of each agent can be consistent with the leader.The purpose of this paper is to investigate a heuristic dynamic programming(HDP)-based learning tracking control for discrete-time multi-agent systems to achieve synchronization while considering disturbances in systems.Besides,due to the difficulty of solving the coupled Hamilton–Jacobi–Bellman equation analytically,an improved HDP learning control algorithm is proposed to realize the synchronization between the leader and all following agents,which is executed by an action-critic neural network.The action and critic neural network are utilized to learn the optimal control policy and cost function,respectively,by means of introducing an auxiliary action network.Finally,two numerical examples and a practical application of mobile robots are presented to demonstrate the control performance of the HDP-based learning control algorithm. 展开更多
关键词 Multi-agent systems heuristic dynamic programming(HDP) Learning control Neural network SYNCHRONIZATION
原文传递
A Sustainable WSN System with Heuristic Schemes in IIoT
17
作者 Wenjun Li Siyang Zhang +3 位作者 Guangwei Wu Aldosary Saad Amr Tolba Gwang-jun Kim 《Computers, Materials & Continua》 SCIE EI 2022年第9期4215-4231,共17页
Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one... Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one of them is the increased cost of coverage. In this paper, we proposea sustainable wireless sensor networks system, which avoids the problemsbrought by 5G network system to some extent. In this system, deployingrelays and selecting routing are for the sake of communication and charging.The main aim is to minimize the total energy-cost of communication underthe precondition, where each terminal with low-power should be charged byat least one relay. Furthermore, from the perspective of graph theory, weextract a combinatorial optimization problem from this system. After that,as to four different cases, there are corresponding different versions of theproblem. We give the proofs of computational complexity for these problems,and two heuristic algorithms for one of them are proposed. Finally, theextensive experiments compare and demonstrate the performances of thesetwo algorithms. 展开更多
关键词 Industrial Internet of Things sustainable wireless sensor network system combinatorial optimization problem heuristic algorithms
在线阅读 下载PDF
Heuristic Scheduling of Job Orders in a Build-to-Order Manufacturing System
18
作者 Chia-Nan Wang Chien-Chang Chou +3 位作者 Yu-Chi Chung Nguyen Ky Phuc Phan VanThanh Nguyen Viet Tinh Nguyen 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期1059-1072,共14页
With the continuous development of technology,traditional manual work has been becoming more and more automated.Most large or medium-sized companies have applied Enterprise Resource Planning(ERP)software into their bu... With the continuous development of technology,traditional manual work has been becoming more and more automated.Most large or medium-sized companies have applied Enterprise Resource Planning(ERP)software into their business and production activities.However,since many small firms cannot afford ERP because of its expensive cost,they often still employ manual work for the same tasks this software resolves,especially for scheduling.This paper aims to provide a possible solution for small businesses to try automated scheduling and discover whether it can help much.There are two main ways to make this determination:a mathematical model and a heuristic model,which are suitable for assessing low-and medium-sized workloads,respectively.This case study was carried out in a small domestic interior furniture company,particularly in scheduling for their customized products in two-stage flow shop.Normally,they produce according to the sequence of customers’orders.However,when we applied these supportive tools with batch-processing machines,they experienced enhanced production performance due to diminishing setup time for distinctive items and a more streamlined arrangement of job sequences.These changes were implemented for some small companies that do not use many production stages and have a suitable number of jobs and customers.If this method were applied to larger demands,it would need further improvement and development to become a complete tool that can perform like a part of an ERP system. 展开更多
关键词 SCHEDULING MATHEMATICAL heuristic flow shop batch-processing
在线阅读 下载PDF
Explainable Rules and Heuristics in AI Algorithm Recommendation Approaches——A Systematic Literature Review and Mapping Study
19
作者 Francisco JoséGarcía-Penlvo Andrea Vázquez-Ingelmo Alicia García-Holgado 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1023-1051,共29页
The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interes... The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms. 展开更多
关键词 SLR systematic literature review artificial intelligence machine learning algorithm recommendation heuristicS explainability
在线阅读 下载PDF
A Fuzzy Reasoning System and Its Heuristic Inference Algorithm
20
作者 Zuo Xiaode & Liang Yun Dept. of Business Administration, Jinan University, Guangzhou 510632, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第4期67-71,共5页
Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rule... Based on a presented inference algorithm of fuzzy reasoning, a fuzzy reasoning system is made up. A method of modeling the fuzzy reasoning system, and the setting up of the reasoning knowledge based and reasoning rules are studied in this paper. Then a heuristic inference algorithm is presented according to the system. 展开更多
关键词 Fuzzy reasoning system heuristic inference algorithm.
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部