期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
VARIABLE SELECTION BY PSEUDO WAVELETS IN HETEROSCEDASTIC REGRESSION MODELS INVOLVING TIME SERIES
1
作者 王清河 周勇 《Acta Mathematica Scientia》 SCIE CSCD 2006年第3期469-476,共8页
A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variabl... A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variables in the regression models are clearly larger than those nonsignificant ones, on the basis of which a procedure is developed to select variables in regression models. The coefficients of the models are also estimated. All estimators are proved to be consistent. 展开更多
关键词 heteroscedastic regression models variable selection wavelets
在线阅读 下载PDF
Subgroup Analysis of a Single-Index Threshold Penalty Quantile Regression Model Based on Variable Selection
2
作者 QI Hui XUE Yaxin 《Wuhan University Journal of Natural Sciences》 2025年第2期169-183,共15页
In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This... In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This article considers subgroup analysis methods for longitudinal data containing multiple covariates and biomarkers.We divide subgroups based on whether a linear combination of these biomarkers exceeds a predetermined threshold,and assess the heterogeneity of treatment effects across subgroups using the interaction between subgroups and exposure variables.Quantile regression is used to better characterize the global distribution of the response variable and sparsity penalties are imposed to achieve variable selection of covariates and biomarkers.The effectiveness of our proposed methodology for both variable selection and parameter estimation is verified through random simulations.Finally,we demonstrate the application of this method by analyzing data from the PA.3 trial,further illustrating the practicality of the method proposed in this paper. 展开更多
关键词 longitudinal data subgroup analysis threshold model quantile regression variable selection
原文传递
Simultaneous variable selection for heteroscedastic regression models 被引量:7
3
作者 ZHANG ZhongZhan1 & WANG DaRong2 1College of Applied Sciences, Beijing University of Technology, Beijing 100124, China 2The Pilot College, Beijing University of Technology, Beijing 101101, China 《Science China Mathematics》 SCIE 2011年第3期515-530,共16页
In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that th... In this paper, we propose a new criterion, named PICa, to simultaneously select explanatory variables in the mean model and variance model in heteroscedastic linear models based on the model structure. We show that the new criterion can select the true mean model and a correct variance model with probability tending to 1 under mild conditions. Simulation studies and a real example are presented to evaluate the new criterion, and it turns out that the proposed approach performs well. 展开更多
关键词 variable selection heteroscedastic regression models adjusted profile log-likelihood AIC BIC
原文传递
Testing heteroscedasticity by wavelets in a nonparametric regression model 被引量:2
4
作者 IP Waicheung 《Science China Mathematics》 SCIE 2006年第9期1211-1222,共12页
In the nonparametric regression models, a homoscedastic structure is usually assumed. However, the homoscedasticity cannot be guaranteed a priori. Hence, testing the heteroscedasticity is needed. In this paper we prop... In the nonparametric regression models, a homoscedastic structure is usually assumed. However, the homoscedasticity cannot be guaranteed a priori. Hence, testing the heteroscedasticity is needed. In this paper we propose a consistent nonparametric test for heteroscedasticity, based on wavelets. The empirical wavelet coefficients of the conditional variance in a regression model are defined first. Then they are shown to be asymptotically normal, based on which a test statistic for the heteroscedasticity is constructed by using Fan's wavelet thresholding idea. Simulations show that our test is superior to the traditional nonparametric test. 展开更多
关键词 regression model heteroscedasticity SIGNIFICANCE test wavelets.
原文传递
Local Walsh-average-based estimation and variable selection for single-index models
5
作者 Jing Yang Fang Lu Hu Yang 《Science China Mathematics》 SCIE CSCD 2019年第10期1977-1996,共20页
We propose a robust estimation procedure based on local Walsh-average regression(LWR) for single-index models. Our novel method provides a root-n consistent estimate of the single-index parameter under some mild regul... We propose a robust estimation procedure based on local Walsh-average regression(LWR) for single-index models. Our novel method provides a root-n consistent estimate of the single-index parameter under some mild regularity conditions;the estimate of the unknown link function converges at the usual rate for the nonparametric estimation of a univariate covariate. We theoretically demonstrate that the new estimators show significant efficiency gain across a wide spectrum of non-normal error distributions and have almost no loss of efficiency for the normal error. Even in the worst case, the asymptotic relative efficiency(ARE) has a lower bound compared with the least squares(LS) estimates;the lower bounds of the AREs are 0.864 and 0.8896 for the single-index parameter and nonparametric function, respectively. Moreover, the ARE of the proposed LWR-based approach versus the ARE of the LS-based method has an expression that is closely related to the ARE of the signed-rank Wilcoxon test as compared with the t-test. In addition, to obtain a sparse estimate of the single-index parameter, we develop a variable selection procedure by combining the estimation method with smoothly clipped absolute deviation penalty;this procedure is shown to possess the oracle property. We also propose a Bayes information criterion(BIC)-type criterion for selecting the tuning parameter and further prove its ability to consistently identify the true model. We conduct some Monte Carlo simulations and a real data analysis to illustrate the finite sample performance of the proposed methods. 展开更多
关键词 single-index models LOCAL Walsh-average regression ASYMPTOTIC RELATIVE efficiency variable selection ORACLE property
原文传递
WAVELET ESTIMATION FOR JUMPS IN A HETEROSCEDASTIC REGRESSION MODEL 被引量:4
6
作者 任浩波 赵延孟 +1 位作者 李元 谢衷洁 《Acta Mathematica Scientia》 SCIE CSCD 2002年第2期269-276,共8页
Wavelets are applied to detect the jumps in a heteroscedastic regression model. It is shown that the wavelet coefficients of the data have significantly large absolute values across fine scale levels near the jump poi... Wavelets are applied to detect the jumps in a heteroscedastic regression model. It is shown that the wavelet coefficients of the data have significantly large absolute values across fine scale levels near the jump points. Then a procedure is developed to estimate the jumps and jump heights. All estimators are proved to be consistent. 展开更多
关键词 heteroscedastic regression model JUMPS wavelets
在线阅读 下载PDF
Dynamic Statistical Models for Corporate Failure Prediction in Italy 被引量:1
7
作者 Alessandra Amendola Marialuisa Restaino Luca Sensini 《Journal of Modern Accounting and Auditing》 2012年第8期1214-1224,共11页
Different models have been proposed in corporate finance literature for predicting the risk of firm's bankruptcy and insolvency. In spite of the large amount of empirical findings, significant issues are still unsolv... Different models have been proposed in corporate finance literature for predicting the risk of firm's bankruptcy and insolvency. In spite of the large amount of empirical findings, significant issues are still unsolved. In this paper, the authors developed dynamic statistical models for bankruptcy prediction of Italian firms in the industrial sector by using financial indicators. The model specification has been obtained via different variable selection techniques, and the predictive accuracy of the proposed default risk models has been evaluated at various horizons by means of different accuracy measures. The reached results give evidence that dynamic models have a better performance in any of the considered scenarios. 展开更多
关键词 default risk financial ratios variable selection logistic regression hazard model
在线阅读 下载PDF
Exploration of the Impact Mechanism of Government Credibility Based on Variable Screening Method
8
作者 Jiajun Wu Yuxiang Ma +2 位作者 Helin Zou Chun Zhang Ran Yan 《Journal of Data Analysis and Information Processing》 2024年第3期479-494,共16页
Government credibility is an important asset of contemporary national governance, an important criterion for evaluating government legitimacy, and a key factor in measuring the effectiveness of government governance. ... Government credibility is an important asset of contemporary national governance, an important criterion for evaluating government legitimacy, and a key factor in measuring the effectiveness of government governance. In recent years, researchers’ research on government credibility has mostly focused on exploring theories and mechanisms, with little empirical research on this topic. This article intends to apply variable selection models in the field of social statistics to the issue of government credibility, in order to achieve empirical research on government credibility and explore its core influencing factors from a statistical perspective. Specifically, this article intends to use four regression-analysis-based methods and three random-forest-based methods to study the influencing factors of government credibility in various provinces in China, and compare the performance of these seven variable selection methods in different dimensions. The research results show that there are certain differences in simplicity, accuracy, and variable importance ranking among different variable selection methods, which present different importance in the study of government credibility issues. This study provides a methodological reference for variable selection models in the field of social science research, and also offers a multidimensional comparative perspective for analyzing the influencing factors of government credibility. 展开更多
关键词 Government Credibility variable selection models Social Statistics regression Based Approach Method Based on Random Forest
在线阅读 下载PDF
VARIABLE SELECTION FOR COVARIATE ADJUSTED REGRESSION MODEL 被引量:1
9
作者 LI Xuejing DU Jiang +1 位作者 LI Gaorong FAN Mingzhi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1227-1246,共20页
This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are ... This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm. 展开更多
关键词 BIC covariate adjusted regression model oracle property variable selection.
原文传递
线性回归模型中基于GMD算法的两阶段组Lasso多变点估计
10
作者 安子祯 董翠玲 《新疆师范大学学报(自然科学版)》 2025年第4期1-9,共9页
利用变量选择方法估计和检测变点是目前流行且有效的方法。文章提出了一种基于GMD算法的两阶段组Lasso多变点估计方法,该方法可以同时估计出线性回归模型中多变点的位置和数量。数值模拟结果显示,与基于GMD算法未分段的组Lasso、未分段... 利用变量选择方法估计和检测变点是目前流行且有效的方法。文章提出了一种基于GMD算法的两阶段组Lasso多变点估计方法,该方法可以同时估计出线性回归模型中多变点的位置和数量。数值模拟结果显示,与基于GMD算法未分段的组Lasso、未分段的自适应Lasso和未分段的Lasso三种变量选择算法的多变点估计方法相比,基于GMD算法的两阶段组Lasso多变点估计方法在估计精度和计算速度两方面均有显著优势。 展开更多
关键词 变量选择 组Lasso GMD算法 线性回归模型 多变点
在线阅读 下载PDF
基于两阶段多变点估计的原油价格模型
11
作者 阿依木古丽·图尔洪 董翠玲 《巢湖学院学报》 2025年第3期66-74,共9页
变量选择技术目前是检测和估计多变点的有效且十分流行的方法,文章介绍了两阶段多变点检测与估计方法,并将此变量选择方法应用到2000年1月1日至2024年11月22日的WTI(West Texas Intermediate)原油期货收盘价周数据的线性回归模型中,检... 变量选择技术目前是检测和估计多变点的有效且十分流行的方法,文章介绍了两阶段多变点检测与估计方法,并将此变量选择方法应用到2000年1月1日至2024年11月22日的WTI(West Texas Intermediate)原油期货收盘价周数据的线性回归模型中,检测出了回归系数的多变点,建立了更精准的分段线性回归模型来刻画国际WTI原油期货收盘价格的走势,并运用第七子段进行了短期预测,说明两阶段多变点估计方法在精准建模和预测中的可行性。 展开更多
关键词 两阶段多变点估计 变量选择 线性回归模型 WTI原油期货价格
在线阅读 下载PDF
部分线性变系数复合分位数回归模型的样条估计和变量选择
12
作者 袁九春 梁沁涵 金君 《兰州文理学院学报(自然科学版)》 2025年第5期29-39,共11页
基于复合分位数损失函数和B样条估计了部分线性变系数模型系数和非参数系数函数,将该方法与自适应LASSO相结合进一步研究了模型的变量选择.在适当的正则条件下,证明了所提出估计方法的大样本性质和Oracle性质.仿真结果与数据分析验证了... 基于复合分位数损失函数和B样条估计了部分线性变系数模型系数和非参数系数函数,将该方法与自适应LASSO相结合进一步研究了模型的变量选择.在适当的正则条件下,证明了所提出估计方法的大样本性质和Oracle性质.仿真结果与数据分析验证了该方法在有限样本下的性能表现. 展开更多
关键词 自适应Lasso 复合分位数回归 B样条曲线 部分线性变系数模型 变量选择
在线阅读 下载PDF
分层4PL模型的贝叶斯变量选择方法
13
作者 程彬 付志慧 《闽南师范大学学报(自然科学版)》 2025年第3期45-55,共11页
主要研究四参数Logistic项目反应理论框架下潜在回归模型系数的贝叶斯变量选择方法。潜在回归模型是项目反应模型的扩展,该模型以学生潜在能力为响应变量,以观测变量(人口学特征、心理特质等)为解释变量建立回归模型。首先,通过将四参数... 主要研究四参数Logistic项目反应理论框架下潜在回归模型系数的贝叶斯变量选择方法。潜在回归模型是项目反应模型的扩展,该模型以学生潜在能力为响应变量,以观测变量(人口学特征、心理特质等)为解释变量建立回归模型。首先,通过将四参数Logistic模型嵌入线性回归模型内,建立潜在回归模型;其次,通过对潜在回归系数引入Laplace、Horseshoe和Horseshoe+三类收缩先验,进行参数估计和变量选择;最后,通过模拟实验,与传统Metropolis-Hasting算法进行比较,以评估Hamiltonian Monte Carlo抽样方法的性能,实验结果表明,所采用的Hamiltonian Monte Carlo估计方法比Metropolis-Hasting算法更高效、更灵活。采用PISA-2018数据集开展实证研究,验证了所提出潜在回归模型及估计方法的有效性与实用性。 展开更多
关键词 四参数Logistic项目反应模型 潜在回归模型 贝叶斯变量选择 Hamiltonian Monte Carlo抽样
在线阅读 下载PDF
函数型数据回归分析综述 被引量:15
14
作者 丁辉 许文超 +3 位作者 朱汉兵 王国长 张涛 张日权 《应用概率统计》 CSCD 北大核心 2018年第6期630-654,共25页
随着计算机储存能力和在线观测技术的提高,当今数据越来越多的以曲线和图像的形式存在.曲线和图像数据两个最显著的特征是高维和相邻数据间高度相关.这些特征使得传统的多元统计分析方法不再适合,而函数型数据在处理曲线和图像数据中具... 随着计算机储存能力和在线观测技术的提高,当今数据越来越多的以曲线和图像的形式存在.曲线和图像数据两个最显著的特征是高维和相邻数据间高度相关.这些特征使得传统的多元统计分析方法不再适合,而函数型数据在处理曲线和图像数据中具有无可比拟的优势.近年来各种各样的函数型数据分析方法得以发展,其中包括数据的对齐、主成分分析、回归、分类、聚类等.本文主要介绍函数型数据回归分析研究的起源、发展及最新进展.具体地,本文首先介绍函数型数据的概念;其次介绍函数型主成分分析方法;再次着重介绍函数型回归模型的估计、变量选择和检验方法;最后将简要探讨函数型数据未来的可能发展方向. 展开更多
关键词 函数型主成分分析 函数型回归模型 变量选择 假设检验
在线阅读 下载PDF
沿海蝗区东亚飞蝗(Locusta migratoria manilensis)产卵场所选择的Logistic回归模型 被引量:5
15
作者 季荣 高增祥 +2 位作者 谢宝瑜 李典谟 曾献春 《生态学报》 CAS CSCD 北大核心 2007年第12期5029-5037,共9页
以沿海蝗区南大港水库为研究区域,通过2002和2003两年野外450,50m规则栅格取样获取东亚飞蝗卵块、植物种类及其密度、土壤特性如含盐量、5cm含水量、pH、有机质及地形(阴坡和阳坡)等数据,采用多元Logistic回归模型,运用SAS软件筛选出与... 以沿海蝗区南大港水库为研究区域,通过2002和2003两年野外450,50m规则栅格取样获取东亚飞蝗卵块、植物种类及其密度、土壤特性如含盐量、5cm含水量、pH、有机质及地形(阴坡和阳坡)等数据,采用多元Logistic回归模型,运用SAS软件筛选出与飞蝗产卵场所选择密切相关的变量,建立用于预测飞蝗产卵场所选择的Logistic回归模型。结果表明用植株密度(veg_d)和土壤含水量(water)所组建的模型能较好地预测飞蝗产卵选择,log1[P(Y=1)/(1-P(Y=1))]=21.63-76.23/water-5.43log(water)-0.86(veg_d)。利用拟合优度(Goodness of fit)、预测准确性(Predictive accuracy)及模型x2统计(Model chi-square statistic)等指标对模型进行评价的结果表明,所组建的用于预测飞蝗产卵场所选择的Logistic回归模型是可靠的,且能较好地预测事件是否发生。研究结果为区域蝗灾早期预警提供了科学依据和方法,对今后预测飞蝗产卵地点选择及防治决策有较高的实用性和应用价值。 展开更多
关键词 二分类因变量 LOGISTIC回归模型 产卵场所选择 东亚飞蝗 沿海蝗区
在线阅读 下载PDF
删失回归模型中一个LASSO型变量选择和估计方法(英文) 被引量:9
16
作者 王占锋 吴耀华 赵林城 《应用概率统计》 CSCD 北大核心 2010年第1期66-80,共15页
删失回归模型是一种很重要的模型,它在计量经济学中有着广泛的应用.然而,它的变量选择问题在现今的参考文献中研究的比较少.本文提出了一个LASSO型变量选择和估计方法,称之为多样化惩罚L1限制方法,简称为DPLC.另外,我们给出了非0回归系... 删失回归模型是一种很重要的模型,它在计量经济学中有着广泛的应用.然而,它的变量选择问题在现今的参考文献中研究的比较少.本文提出了一个LASSO型变量选择和估计方法,称之为多样化惩罚L1限制方法,简称为DPLC.另外,我们给出了非0回归系数估计的大样本渐近性质.最后,大量的模拟研究表明了DPLC方法和一般的最优子集选择方法在变量选择和估计方面有着相同的能力. 展开更多
关键词 删失回归模型 最小绝对偏差 变量选择 LASSO
在线阅读 下载PDF
极值分布下联合位置与散度模型的变量选择 被引量:6
17
作者 吴刘仓 李会琼 《工程数学学报》 CSCD 北大核心 2012年第5期670-680,共11页
极值分布在地震、洪灾和其它自然灾害的预测中是非常有用的.在许多应用方面,很有必要对散度建模.本文推广经典极值回归模型,研究了联合位置与散度模型,并提出了一种同时对位置模型和散度模型的变量选择方法.同时证明了惩罚极大似然估计... 极值分布在地震、洪灾和其它自然灾害的预测中是非常有用的.在许多应用方面,很有必要对散度建模.本文推广经典极值回归模型,研究了联合位置与散度模型,并提出了一种同时对位置模型和散度模型的变量选择方法.同时证明了惩罚极大似然估计具有相合性和oracle性质,通过随机模拟研究了所提出方法的有限样本性质. 展开更多
关键词 异方差模型 联合位置与散度模型 惩罚极大似然估计 变量选择 估计理论
在线阅读 下载PDF
基于变量选择和聚类分析的两阶段异方差模型估计 被引量:4
18
作者 李顺勇 钱宇华 +1 位作者 张晓琴 牛建永 《应用概率统计》 CSCD 北大核心 2018年第2期191-200,共10页
建模经济学领域中的面板数据,异方差性在所难免.两阶段估计方法是一种较好的研究异方差性的手段,在进行样本分组时,如果仅选定一个自变量作为依据,会导致信息量不完整.本文提出了用变量选择的方法筛选出用于分组的几个变量,之后用κ均... 建模经济学领域中的面板数据,异方差性在所难免.两阶段估计方法是一种较好的研究异方差性的手段,在进行样本分组时,如果仅选定一个自变量作为依据,会导致信息量不完整.本文提出了用变量选择的方法筛选出用于分组的几个变量,之后用κ均值方法进行聚类,进而实现对样本的类别划分,从而可以得到异方差估计.实证显示:在异方差估计精度和拟合值方面,本文提出的方法在有效性和可行性方面优势明显. 展开更多
关键词 异方差模型 变量选择 K均值 两阶段估计
在线阅读 下载PDF
基于向前选择变量法的我国粮食总产量多元线性回归预测模型 被引量:7
19
作者 刘东 白雪峰 孟军 《东北农业大学学报》 CAS CSCD 北大核心 2010年第10期124-128,共5页
结合1983~2006年我国粮食总产量及与之密切相关的粮食单产、粮食播种面积、化肥施用量、有效灌溉面积、农机总动力、农田成灾面积等6个影响因子序列资料,采用向前选择变量法,构建了我国中长期粮食总产量多元线性回归预测模型。结果表明... 结合1983~2006年我国粮食总产量及与之密切相关的粮食单产、粮食播种面积、化肥施用量、有效灌溉面积、农机总动力、农田成灾面积等6个影响因子序列资料,采用向前选择变量法,构建了我国中长期粮食总产量多元线性回归预测模型。结果表明,粮食单产、粮食播种面积、化肥施用量及农田成灾面积是我国粮食总产量的关键制约因子,措施得当,未来我国完全可以在耕地资源不可逆转减少的前提下实现粮食总产量的持续增长。研究成果可为我国粮食安全保障体系的构建提供决策依据。 展开更多
关键词 粮食安全 粮食总产量 多元线性回归模型 向前选择变量法
在线阅读 下载PDF
基于特征子空间虚假邻点判别的软传感器模型变量选择 被引量:4
20
作者 李太福 易军 +2 位作者 苏盈盈 胡文金 余春娇 《机械工程学报》 EI CAS CSCD 北大核心 2011年第12期7-12,共6页
辅助变量选择技术是软传感器建模过程中降低信息冗余和提高效率的有效方法。提出一种结合偏最小二乘回归法与虚假最近邻法的变量选择法。采用偏最小二乘回归法有效合理地消除因子之间的多重共线性,在一个新的正交空间里,受混沌相空间虚... 辅助变量选择技术是软传感器建模过程中降低信息冗余和提高效率的有效方法。提出一种结合偏最小二乘回归法与虚假最近邻法的变量选择法。采用偏最小二乘回归法有效合理地消除因子之间的多重共线性,在一个新的正交空间里,受混沌相空间虚假最近邻点法的启示,通过计算某变量选择前后在特征子空间里的相关性,判断其对主导变量的解释能力,由此进行变量的选择,利用偏最小二乘法得到软测量模型。该方法通过构造的试验和Jolliff变量选择试验作了验证,结果显示该方法有良好的辅助变量选择能力,为软传感器建模的辅助变量选择方法提供了一种新方法。 展开更多
关键词 软传感器建模 辅助变量选择 特征子空间 偏最小二乘回归法 虚假最近邻法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部