Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial ...Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial electrical characteristics play a crucial role in determining their performance and functionality. In this study,we explore the interfacial polarization coupling in two-dimensional(2D) ferroelectric heterojunctions by fabricating a graphene/h-BN/CuInP_(2)S_(6)/α-In_(2)Se_(3)/Au ferroelectric field-effect transistor. By varying the gate electric field, the CuInP_(2)S_(6)/α-In_(2)Se_(3) heterojunction displays distinct interfacial polarization coupling states, resulting in significantly different electrical transport behaviors. Under strong gate electric fields, the migration of Cu ions further enhances the interfacial polarization effect, enabling continuous tuning of both the polarization state and carrier concentration in α-In_(2)Se_(3). Our findings offer valuable insights for the development of novel multifunctional devices based on 2D ferroelectric materials.展开更多
The design of customized crystal plane heterojunction can effectively leverage the optimal anisotropic interaction of crystal plane,thereby enhancing photocatalytic activity.In this study,Co_(3)O_(4) exposed(111),(110...The design of customized crystal plane heterojunction can effectively leverage the optimal anisotropic interaction of crystal plane,thereby enhancing photocatalytic activity.In this study,Co_(3)O_(4) exposed(111),(110),and(100)crystal planes(designated as HCO,NCO,and CCO,respectively)were synthesized and successfully coupled with Cd_(0.5)Zn_(0.5)S(CZS).Among these composites,the HCO/CZS exhibited best hydrogen evolution activity.In conjunction with DFT calculations and femtosecond transient absorption spectroscopy,it has been found that:the crystal plane interaction between HCO and CZS enabled the composite catalyst to exhibit optimal anisotropy in crystal plane carrier transport,crystal plane active sites,and crystal plane electronic structure.This interaction induces a redistribution of electrons at their contact interface,thereby establishing a built-in electric field that facilitates the formation of ohmic heterojunction between HCO and CZS.The synergistic effect of the ohmic heterojunction and crystal plane anisotropy not only decreases the Gibbs free energy of hydrogen adsorption but also facilitates the efficient spatial separation and rapid transfer of electron-hole pairs.This study offers valuable insights into the customization of crystal plane heterojunctions,aiming to maximize anisotropic interactions between crystal planes in order to enhance photocatalytic hydrogen evolution.展开更多
In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garn...In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garnered significant interest due to their wideranging applications,including wastewater treatment,air purification,CO_(2) capture,and hydrogen generation via water splitting.This technique harnesses the power of semiconductors,which are activated under light illumination,providing the necessary energy for catalytic reactions.With visible light constituting a substantial portion(46%)of the solar spectrum,the development of visible-light-driven semiconductors has become imperative.Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light.In this comprehensive review,we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media,as well as the remarkable progress made in renewable energy production.Moreover,we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems.Finally,we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain.By unraveling the potential of heterojunction photocatalysts,this reviewcontributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.展开更多
It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for elec...It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.展开更多
Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transf...Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.展开更多
Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obt...Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.展开更多
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi...BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
A Co_(3)O_(4)/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selec-tive photocatalytic CO_(2)reduction.The optimized Co_(3)O_(4)/BiOBr-0.8 catalyst exhibited CO and CH_(4)evo...A Co_(3)O_(4)/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selec-tive photocatalytic CO_(2)reduction.The optimized Co_(3)O_(4)/BiOBr-0.8 catalyst exhibited CO and CH_(4)evolution rates of 112.2 and 5.5µmol·g^(-1)·h^(-1),respectively,representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr.The heterojunction demonstrated broadened light absorption,enhanced photoelectrochemical activity,reduced charge-transfer resistance,and improved separation efficiency of photogenerated carriers(e^(-)/h^(+)).These synergistic effects were attributed to the formation of a Z-scheme heterostructure,which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination.展开更多
Solar hydrogen production via water splitting is pivotal for solar energy harnessing,addressing key challenges in energy and environmental sustainability.However,two critical issues persist with single-component photo...Solar hydrogen production via water splitting is pivotal for solar energy harnessing,addressing key challenges in energy and environmental sustainability.However,two critical issues persist with single-component photocatalysts:suboptimal carrier transport and inadequate light absorption.While heterojunction-based artificial photosynthetic systems like Z-scheme photocatalysts have been explored,their charge recombination and light harvesting efficiency are still unsatisfactory.S-scheme heterojunctions have gained attention in photocatalysis,owing to their pronounced built-in electric field and superior redox capabilities.In this study,we introduce a MXene-based S-scheme H-TiO_(2)/g-C_(3)N_(4)/Ti_(3)C_(2)heterojunction(TCMX),synthesized through electrostatic self-assembly.The as-prepared TCMX exhibited an excellent photocatalytic hydrogen evolution rate of 53.67 mmol g^(-1)h^(-1)surpassing the performance of commercial Rutile TiO_(2),H-TiO_(2),g-C_(3)N_(4),and HTCN.The effectiveness of TCMX is largely due to the builtin electric field in the S-scheme heterojunction and the cocatalytic activity of MXene promoting rapid separation of photogenerated charges and resulting in well-separated electron and hole enriched sites.This study offers a new approach to enhance photocatalytic hydrogen evolution efficiency and paves the way for the future design of S-scheme heterojunctions.展开更多
Antibiotics and heavy metals usually co-exist in wastewater and pose serious environmental hazards.Herein,a series of VMo-BMO/O_(v)-BOB S-scheme heterojunctions with double vacancy(Mo vacancy and photoexcited O vacanc...Antibiotics and heavy metals usually co-exist in wastewater and pose serious environmental hazards.Herein,a series of VMo-BMO/O_(v)-BOB S-scheme heterojunctions with double vacancy(Mo vacancy and photoexcited O vacancy)were constructed via an electrostatic assembly method.The removal efficiency of Cr(VI)and tetracycline(TC)over VMo-BMO/O_(v)-BOB-0.3 was 2.47 and 1.13 times than that of a single system,respectively.In-situ EPR demonstrated that the surface O vacancies could be generated under LED light irradiation.These photoexcited O vacancies(P-O_(v))enabled VMo-BMO/O_(v)-BOB composites still exhibit satisfactory activity after five successive cycles and an amplified Fermi level gap.The enhancement could be attributed to the enhanced internal electric field and double-vacancy-induced polarization.Additionally,the density functional theory calculation results suggested that double vacancy induced polarization electric field increases the dipole moment,which was conducive to rapid electron transport.Photoluminescence and time-resolved photoluminescence analysis demonstrated that the introduction of S-scheme heterojunction and double vacancy promoted charge transfer and prolonged the lifetime of carriers.Degradation intermediates and toxicity of products were evaluated.In conclusion,a possible mechanism based on VMo-BMO/O_(v)-BOB S-scheme heterojunction in the simultaneous removal of Cr(VI)and TC was proposed.展开更多
Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,thi...Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,this photocatalytic reaction process includes the following steps:First,the semiconductor photocatalyst is photoexcited to generate photoinduced excitons on a femtosecond timescale.Next,the photoinduced excitons are separated into photogenerated electrons and holes,occurring within a femtosecond to picosecond timescale.Subsequently,only a small fraction of the photogenerated electrons and holes can overcome kinetic barriers,such as phonon scattering and bulk defects,to migrate to the surface。展开更多
The rapid development of rare earth metal elements in the field of photocatalysis is due to their excellent optical and physicochemical properties.Benefiting from the unique external electronic structure of 4f_15d_16S...The rapid development of rare earth metal elements in the field of photocatalysis is due to their excellent optical and physicochemical properties.Benefiting from the unique external electronic structure of 4f_15d_16S_2,superior electronegativity of the 4f orbitals,and strong oxygen storage-release ability in Ce^(4+)/Ce^(3+)reversible pairs,cerium dioxide(CeO_(2))has attracted increasing interest from scientists.Nevertheless,the fast recombination of photoinduced electron-hole pairs and wide energy band gap of bare CeO_(2)significantly limit its practical applications.To overcome the above drawbacks,the construction of heterojunctions has been developed to broaden the absorption spectrum and accelerate the charge transfer.This review presents a mini-review of the synthesis of CeO_(2)-based heterojunctions including typeⅡ,Z-scheme,and S-scheme photocatalysts,as well as the corresponding applications in photocatalytic bactericidal and antitumor therapy.Finally,the latest advancements and potential perspectives on their future development are also discussed.展开更多
Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carb...Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carbon((Co_(9)S_(8)/CoS)@SNC)microleaf arrays,which are rooted on S-doped carbonized wood fibers(SCWF).Benefiting from the synergistic electronic interactions on heterointerfaces and the accelerated mass transfer by array structure,the obtained self-supporting(Co_(9)S_(8)/CoS)@SNC/SCWF electrode exhibits superior performance toward alkaline oxygen evolution reaction(OER)with an ultra-low overpotential of 274 mV at 1000 mA/cm^(2),a small Tafel slope of 48.84 mV/dec,and ultralong stability up to 100 h.Theoretical calculations show that interfacing Co_(9)S_(8)with CoS can upshift the d-band center of the Co atoms and strengthen the interactions with oxygen intermediates,thereby favoring OER performance.Furthermore,the(Co_(9)S_(8)/CoS)@SNC/SCWF electrode shows outstanding rechargeability and stable cycle life in aqueous Zn-air batteries with a peak power density of 201.3 mW/cm^(2),exceeding the commercial RuO_(2)and Pt/C hybrid catalysts.This work presents a promising strategy for the design of high-current-density OER electrocatalysts from sustainable wood fiber resources,thus promoting their practical applications in the field of electrochemical energy storage and conversion.展开更多
Sonodynamic therapy(SDT)is a new non-invasive treatment method,which uses low-intensity ultrasound(US)to activate specific sonosensitizers(SNs)to produce reactive oxygen species(ROS)for therapeutic purposes.However,tr...Sonodynamic therapy(SDT)is a new non-invasive treatment method,which uses low-intensity ultrasound(US)to activate specific sonosensitizers(SNs)to produce reactive oxygen species(ROS)for therapeutic purposes.However,traditional sonosensitizers have the defects of low generation efficiency of ROS and single treatment mode.Therefore,designing sonosensitizers with high efficiency to generate ROS,high stability,and multimodal therapy is an excellent alternative to achieve effective,safe,and intelligent therapy.Heterojunction nanosonosensitizers(NSNs),as novel type of SNs,combine different materials through heterojunction structures to improve the efficiency of ROS generation.In this review,the classification of heterojunction NSNs,the preparation methods and characterization methods of heterojunction NSNs and the possible mechanisms for enhancing SDT were firstly presented,followed by an in-depth discussion of the application of heterojunction NSNs in the treatment of bacterial infections and tumors,with a special emphasis on synergistic enhancement of therapeutic efficacy of heterojunction SNs in combination with different therapeutic models such as gas therapy,immunotherapy and nanocatalytic therapy.Finally,the challenges and perspectives of such heterojunction SNs-supported SDT were outlined and highlighted to facilitate their clinical translation.展开更多
Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a...Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a rising crystalline material for photocatalytic application.Yet,most MOFs still face challenges like chemical instability in solution media,no photosensitization,and ambiguous active sites.Herein,thiol-dense Hf-or Zr-based porous frameworks(Hf-,Zr-TBAPy-8SH)were prepared as platforms for facile construction of HER active sites by anchoring transition metal(TM)ions as well as forming heterojunction with nanoscale semiconductor(CdS).The highest HER rate of 8.15mmol g^(-1) h^(-1) by Co(Ⅱ)-loaded Hf-based composite highlight(1)[S^(-)-Co]motifs as competent HER site,(2)match heterojunction outweighing traditional photosensitizer-mediated HER,(3)regulating electron density of metal-oxo cluster as a way to harness HER activity.This study firstly demonstrates synergy of Hf-oxo clusters,thiol functionalities and heterojunction as an easy yet controllable strategy to form integrated photocatalyst.展开更多
Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(B...Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(BiVO_(4)/NH_(2)-MIL-125(Ti)/NH_(2)-MIL-53(Fe),denoted as BVO/NM125/NM53)was rationally designed and prepared for PEC removing and detoxification of organic contaminants(phenol,tetracycline hydrochloride,ciprofloxacin and norfloxacin).The S-scheme heterojunction was double confirmed by DFT calculation and XPS analysis.The charge transfer resistance of BVO/NM125/NM53 photoanode decreases to 1/11 of bare BiVO_(4) photoanode.Meanwhile,the photocurrent densitywas 3 times higher,demonstrating a marked improvement in carrier separation efficiency due to dual S-scheme heterojunction.The photoanode achieved 94.3%removal of phenol within 60 min and maintained stable performance over 10 consecutive cycles,demonstrating good PEC efficiency and structural stability.The BVO/NM125/NM53 photoanode also showed effectiveness in removing antibiotics,with chlorophyll fluorescence imaging confirming a significant reduction in the ecotoxicity of intermediates.For example,wheat seed germination,growth,chlorophyll and Carotenoid production were not affected,which was similar to that of deionized water.Radical trapping experiments and electron paramagnetic resonance(EPR)analysis identified·O_(2)^(-)and·OH as the primary active species.This work demonstrates the effectiveness of developing MOF-on-MOF heterojunctions for visible-light response and enhancing charge separation in PEC.展开更多
The activity of photocatalysts can be significantly regulated by designing micro-scale interfacial heterojunctions. The present study demonstrates the skillful construction of a graphdiyne/Sr_(2)Co_(2)O_(5) S-scheme h...The activity of photocatalysts can be significantly regulated by designing micro-scale interfacial heterojunctions. The present study demonstrates the skillful construction of a graphdiyne/Sr_(2)Co_(2)O_(5) S-scheme heterojunction, exhibiting exceptional stability, excellent proton adsorption, and remarkable photocatalytic activity. On the basis of in-situ XPS and calculation of work function, it is proved that the electron migration path between the interface of graphdiyne and Sr_(2)Co_(2)O_(5) conforms to the S-scheme heterojunction mechanism. The recombination rate of photogenerated carriers is significantly reduced by virtue of the synergistic effect of the internal electric field and band edge bending while preserving the inherent redox ability of the materials. The strong coupling between layered graphdiyne and hierarchical flower-like Sr_(2)Co_(2)O_(5) effectively enhances the specific surface area of graphdiyne/Sr_(2)Co_(2)O_(5) heterojunction, thereby facilitating H2O pre-adsorption. Combined with experiments and DFT calculations, it was found that both graphdiyne and Sr_(2)Co_(2)O_(5) have a direct band gap, which makes their electronic transitions without the assistance of phonons, thus improving the efficiency of solar energy conversion. This study offers insights into the potential application of graphdiyne and metal oxides in the field of photocatalytic hydrogen evolution.展开更多
A BiOI/BiOBr S-scheme heterojunction photocatalyst was synthesized using a solvothermal method,and its ability to degrade Congo red was thoroughly investigated.The photocatalytic performance of the BiOI/BiOBr heteroju...A BiOI/BiOBr S-scheme heterojunction photocatalyst was synthesized using a solvothermal method,and its ability to degrade Congo red was thoroughly investigated.The photocatalytic performance of the BiOI/BiOBr heterojunction was compared with that of pure BiOBr and BiOI.The structural,morphological,optical,and electrical properties of the samples were characterized using X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-vis diffuse reflectance spectroscopy(UV-vis DRS),and zeta potential analysis.The degradation rate of Congo red was determined by spectrophotometry,revealing that the BiOI/BiOBr S-scheme heterojunction exhibited excellent photocatalytic performance,achieving a degradation rate of 96.8%for a 50 mg/L Congo red solution within 75 minutes.This rate was significantly higher than those achieved by pure BiOBr(77.2%)and BiOI(83.1%).Theoretical calculations indicate that the S-scheme heterojunction effectively facilitates the separation of photogenerated charge carriers while preserving the strong redox ability of the composite.These characteristics are identified as the key factors underlying the superior photocatalytic degradation efficiency of the BiOI/BiOBr S-scheme heterostructure.展开更多
Developing heterojunction photocatalyst with well-matched interfaces andmultiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal,but still remains a great c...Developing heterojunction photocatalyst with well-matched interfaces andmultiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal,but still remains a great challenge.In present work,a new strategy of chloride anion intercalation in Bi_(2)O_(3)via one-pot hydrothermal process is proposed.The as-prepared Ta-BiOCl/Bi_(24)O_(31)Cl_(10)(TBB)heterojunctions are featured with Ta-Bi_(24)O_(31)Cl_(10)and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces.In this TBB heterojunctions,the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer andmultiple transfer paths,respectively,leading to enhanced visible light response and improved photogenerated charge separation.Meanwhile,a type-II heterojunction for photocharge separation has been obtained,in which photogenerated electrons are drove from the CB(conduction band)of Ta-Bi_(24)O_(31)Cl_(10)to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl,while the photogenerated holes are left on the VB(valence band)of Ta-Bi_(24)O_(31)Cl_(10),effectively hindering the recombination of photogenerated electron-hole pairs.Furthermore,the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species(·O_(2)^(−)).Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride(TCH)solution to Bi_(2)O_(3),Ta-BiOCl and Ta-Bi_(24)O_(31)Cl_(10).This work not only proposes a Ta-BiOCl/Bi_(24)O_(31)Cl_(10)shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-Ⅱheterojunction for highly efficient photocatalytic activity,but offers a new insight into the design of highly efficient heterojunction through phasestructure synergistic transformation strategy.展开更多
基金supported by the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-049)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)the Fundamental Research Funds for the Central Universities(Grant No.WK3510000013)。
文摘Recent advances in van der Waals(vdW) ferroelectrics have sparked the development of related heterostructures with non-volatile and field-tunable functionalities. In vdW ferroelectric heterojunctions, the interfacial electrical characteristics play a crucial role in determining their performance and functionality. In this study,we explore the interfacial polarization coupling in two-dimensional(2D) ferroelectric heterojunctions by fabricating a graphene/h-BN/CuInP_(2)S_(6)/α-In_(2)Se_(3)/Au ferroelectric field-effect transistor. By varying the gate electric field, the CuInP_(2)S_(6)/α-In_(2)Se_(3) heterojunction displays distinct interfacial polarization coupling states, resulting in significantly different electrical transport behaviors. Under strong gate electric fields, the migration of Cu ions further enhances the interfacial polarization effect, enabling continuous tuning of both the polarization state and carrier concentration in α-In_(2)Se_(3). Our findings offer valuable insights for the development of novel multifunctional devices based on 2D ferroelectric materials.
文摘The design of customized crystal plane heterojunction can effectively leverage the optimal anisotropic interaction of crystal plane,thereby enhancing photocatalytic activity.In this study,Co_(3)O_(4) exposed(111),(110),and(100)crystal planes(designated as HCO,NCO,and CCO,respectively)were synthesized and successfully coupled with Cd_(0.5)Zn_(0.5)S(CZS).Among these composites,the HCO/CZS exhibited best hydrogen evolution activity.In conjunction with DFT calculations and femtosecond transient absorption spectroscopy,it has been found that:the crystal plane interaction between HCO and CZS enabled the composite catalyst to exhibit optimal anisotropy in crystal plane carrier transport,crystal plane active sites,and crystal plane electronic structure.This interaction induces a redistribution of electrons at their contact interface,thereby establishing a built-in electric field that facilitates the formation of ohmic heterojunction between HCO and CZS.The synergistic effect of the ohmic heterojunction and crystal plane anisotropy not only decreases the Gibbs free energy of hydrogen adsorption but also facilitates the efficient spatial separation and rapid transfer of electron-hole pairs.This study offers valuable insights into the customization of crystal plane heterojunctions,aiming to maximize anisotropic interactions between crystal planes in order to enhance photocatalytic hydrogen evolution.
基金supported by the National Natural Science Foundation of China (Nos.52072152 and 51802126)Jiangsu University Jinshan Professor Fund,Jiangsu Specially-Appointed Professor Fund,the Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials,Zhenjiang“Jinshan Talents”Project 2021,China PostDoctoral Science Foundation (No.2022M721372)+1 种基金the“Doctor of Entrepreneurship and Innovation”in Jiangsu Province (No.JSSCBS20221197)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_3645).
文摘In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garnered significant interest due to their wideranging applications,including wastewater treatment,air purification,CO_(2) capture,and hydrogen generation via water splitting.This technique harnesses the power of semiconductors,which are activated under light illumination,providing the necessary energy for catalytic reactions.With visible light constituting a substantial portion(46%)of the solar spectrum,the development of visible-light-driven semiconductors has become imperative.Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light.In this comprehensive review,we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media,as well as the remarkable progress made in renewable energy production.Moreover,we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems.Finally,we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain.By unraveling the potential of heterojunction photocatalysts,this reviewcontributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
基金supported by the National Natural Science Foundation of China(22302019)the Changzhou Sci&Tech Program(CJ20220214).
文摘It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.
基金supported by National Science Fund for Distinguished Young Scholars(Grant No.52325206)National Key Research and Development Program of China(Grant No.2021YFF0500600)+3 种基金National Natural Science Foundation of China(Grant Nos.U2001220 and 52203298)Shenzhen Technical Plan Project(Grant Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008,and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(Grant No.SZPR2023006)Shenzhen Science and Technology Program(Grant No.WDZC20231126160733001).
文摘Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.
基金supported by the National Key Research and Development Program of China(2020YFD1100501)Thanks zkec(www.zjkec.cc)for XRD.
文摘Fenton method combined with light to accelerate the production of free radicals from H2O2 can achieve more efficient pollutant degradation.In this paper,a novel BiOI/FeWO4 S-scheme heterojunction photocatalyst was obtained by in situ synthesis,which can activate H2O2 and degrade the organic pollutant OFC(ofloxacin)under visible light.The S-scheme charge transfer mechanism was confirmed by XPS spectroscopy,in situ KPFM and theoretical calculation.The photogenerated electrons were transferred from FeWO4 to BiOI driven by the built-in electric field and band bending,which inhibited carrier recombination and facilitated the activation of H2O2.The BiFe-5/Vis/H2O2 system degraded OFC up to 96.4%in 60 min.This study provides new systematic insights into the activation of H2O2 by S-scheme heterojunctions,which is of great significance for the treatment of antibiotic wastewater.
基金financially supported by the National Natural Science Foundation of China(No.22272151)Public Welfare Technology Application Research Project of Jinhua City,China(No.2023-4-022)。
文摘BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
文摘A Co_(3)O_(4)/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selec-tive photocatalytic CO_(2)reduction.The optimized Co_(3)O_(4)/BiOBr-0.8 catalyst exhibited CO and CH_(4)evolution rates of 112.2 and 5.5µmol·g^(-1)·h^(-1),respectively,representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr.The heterojunction demonstrated broadened light absorption,enhanced photoelectrochemical activity,reduced charge-transfer resistance,and improved separation efficiency of photogenerated carriers(e^(-)/h^(+)).These synergistic effects were attributed to the formation of a Z-scheme heterostructure,which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination.
基金financially supported by the National Natural Science Foundation of China(Nos.51872116,12034002,and 22279044)Jilin Province Science and Technology Development Program(No.20210301009GX)+1 种基金project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission(No.2021C026)the Fundamental Research Funds for the Central Universities,and City University of Hong Kong(No.CityU 9610577).
文摘Solar hydrogen production via water splitting is pivotal for solar energy harnessing,addressing key challenges in energy and environmental sustainability.However,two critical issues persist with single-component photocatalysts:suboptimal carrier transport and inadequate light absorption.While heterojunction-based artificial photosynthetic systems like Z-scheme photocatalysts have been explored,their charge recombination and light harvesting efficiency are still unsatisfactory.S-scheme heterojunctions have gained attention in photocatalysis,owing to their pronounced built-in electric field and superior redox capabilities.In this study,we introduce a MXene-based S-scheme H-TiO_(2)/g-C_(3)N_(4)/Ti_(3)C_(2)heterojunction(TCMX),synthesized through electrostatic self-assembly.The as-prepared TCMX exhibited an excellent photocatalytic hydrogen evolution rate of 53.67 mmol g^(-1)h^(-1)surpassing the performance of commercial Rutile TiO_(2),H-TiO_(2),g-C_(3)N_(4),and HTCN.The effectiveness of TCMX is largely due to the builtin electric field in the S-scheme heterojunction and the cocatalytic activity of MXene promoting rapid separation of photogenerated charges and resulting in well-separated electron and hole enriched sites.This study offers a new approach to enhance photocatalytic hydrogen evolution efficiency and paves the way for the future design of S-scheme heterojunctions.
文摘Antibiotics and heavy metals usually co-exist in wastewater and pose serious environmental hazards.Herein,a series of VMo-BMO/O_(v)-BOB S-scheme heterojunctions with double vacancy(Mo vacancy and photoexcited O vacancy)were constructed via an electrostatic assembly method.The removal efficiency of Cr(VI)and tetracycline(TC)over VMo-BMO/O_(v)-BOB-0.3 was 2.47 and 1.13 times than that of a single system,respectively.In-situ EPR demonstrated that the surface O vacancies could be generated under LED light irradiation.These photoexcited O vacancies(P-O_(v))enabled VMo-BMO/O_(v)-BOB composites still exhibit satisfactory activity after five successive cycles and an amplified Fermi level gap.The enhancement could be attributed to the enhanced internal electric field and double-vacancy-induced polarization.Additionally,the density functional theory calculation results suggested that double vacancy induced polarization electric field increases the dipole moment,which was conducive to rapid electron transport.Photoluminescence and time-resolved photoluminescence analysis demonstrated that the introduction of S-scheme heterojunction and double vacancy promoted charge transfer and prolonged the lifetime of carriers.Degradation intermediates and toxicity of products were evaluated.In conclusion,a possible mechanism based on VMo-BMO/O_(v)-BOB S-scheme heterojunction in the simultaneous removal of Cr(VI)and TC was proposed.
文摘Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,this photocatalytic reaction process includes the following steps:First,the semiconductor photocatalyst is photoexcited to generate photoinduced excitons on a femtosecond timescale.Next,the photoinduced excitons are separated into photogenerated electrons and holes,occurring within a femtosecond to picosecond timescale.Subsequently,only a small fraction of the photogenerated electrons and holes can overcome kinetic barriers,such as phonon scattering and bulk defects,to migrate to the surface。
基金Project supported by the National Key Research and Development Program of China(2022YFB3504100,2021YFB3500600)Chunhui Project Foundation of the Education Department of China(202200554)。
文摘The rapid development of rare earth metal elements in the field of photocatalysis is due to their excellent optical and physicochemical properties.Benefiting from the unique external electronic structure of 4f_15d_16S_2,superior electronegativity of the 4f orbitals,and strong oxygen storage-release ability in Ce^(4+)/Ce^(3+)reversible pairs,cerium dioxide(CeO_(2))has attracted increasing interest from scientists.Nevertheless,the fast recombination of photoinduced electron-hole pairs and wide energy band gap of bare CeO_(2)significantly limit its practical applications.To overcome the above drawbacks,the construction of heterojunctions has been developed to broaden the absorption spectrum and accelerate the charge transfer.This review presents a mini-review of the synthesis of CeO_(2)-based heterojunctions including typeⅡ,Z-scheme,and S-scheme photocatalysts,as well as the corresponding applications in photocatalytic bactericidal and antitumor therapy.Finally,the latest advancements and potential perspectives on their future development are also discussed.
基金supported by National Key Research and Development Program of China(No.2023YFD2200503)the Young Elite Scientists Sponsorship Program from National Forestry and Grassland Administration of China(No.2019132614)+1 种基金the Science and Technology Innovation Program of Hunan Province(Nos.2021RC3103 and 2022RC3054)the Scientific Research Project of Hunan Provincial Education Department(Nos.23B0276 and 21B0225).
文摘Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carbon((Co_(9)S_(8)/CoS)@SNC)microleaf arrays,which are rooted on S-doped carbonized wood fibers(SCWF).Benefiting from the synergistic electronic interactions on heterointerfaces and the accelerated mass transfer by array structure,the obtained self-supporting(Co_(9)S_(8)/CoS)@SNC/SCWF electrode exhibits superior performance toward alkaline oxygen evolution reaction(OER)with an ultra-low overpotential of 274 mV at 1000 mA/cm^(2),a small Tafel slope of 48.84 mV/dec,and ultralong stability up to 100 h.Theoretical calculations show that interfacing Co_(9)S_(8)with CoS can upshift the d-band center of the Co atoms and strengthen the interactions with oxygen intermediates,thereby favoring OER performance.Furthermore,the(Co_(9)S_(8)/CoS)@SNC/SCWF electrode shows outstanding rechargeability and stable cycle life in aqueous Zn-air batteries with a peak power density of 201.3 mW/cm^(2),exceeding the commercial RuO_(2)and Pt/C hybrid catalysts.This work presents a promising strategy for the design of high-current-density OER electrocatalysts from sustainable wood fiber resources,thus promoting their practical applications in the field of electrochemical energy storage and conversion.
基金supported by Key Research Project of the Educational Department of Liaoning Province,China(No.JYTZD2023139).
文摘Sonodynamic therapy(SDT)is a new non-invasive treatment method,which uses low-intensity ultrasound(US)to activate specific sonosensitizers(SNs)to produce reactive oxygen species(ROS)for therapeutic purposes.However,traditional sonosensitizers have the defects of low generation efficiency of ROS and single treatment mode.Therefore,designing sonosensitizers with high efficiency to generate ROS,high stability,and multimodal therapy is an excellent alternative to achieve effective,safe,and intelligent therapy.Heterojunction nanosonosensitizers(NSNs),as novel type of SNs,combine different materials through heterojunction structures to improve the efficiency of ROS generation.In this review,the classification of heterojunction NSNs,the preparation methods and characterization methods of heterojunction NSNs and the possible mechanisms for enhancing SDT were firstly presented,followed by an in-depth discussion of the application of heterojunction NSNs in the treatment of bacterial infections and tumors,with a special emphasis on synergistic enhancement of therapeutic efficacy of heterojunction SNs in combination with different therapeutic models such as gas therapy,immunotherapy and nanocatalytic therapy.Finally,the challenges and perspectives of such heterojunction SNs-supported SDT were outlined and highlighted to facilitate their clinical translation.
基金supported by the National Natural Science Foundation of China(Nos.22371054,22301045)the Foundation of Basic and Applied Basic Research of Guangdong Province(Nos.2020B1515120024,2024A1515012801)Science and Technology Planning Project of Guangdong Province(Nos.2021A0505030066,2023A0505050164).
文摘Photocatalytic water splitting for hydrogen evolution reaction(HER)has emerged as one of the most promising approaches for solar energy utilization.Porous easily functionalized metal-organic framework(MOF)represents a rising crystalline material for photocatalytic application.Yet,most MOFs still face challenges like chemical instability in solution media,no photosensitization,and ambiguous active sites.Herein,thiol-dense Hf-or Zr-based porous frameworks(Hf-,Zr-TBAPy-8SH)were prepared as platforms for facile construction of HER active sites by anchoring transition metal(TM)ions as well as forming heterojunction with nanoscale semiconductor(CdS).The highest HER rate of 8.15mmol g^(-1) h^(-1) by Co(Ⅱ)-loaded Hf-based composite highlight(1)[S^(-)-Co]motifs as competent HER site,(2)match heterojunction outweighing traditional photosensitizer-mediated HER,(3)regulating electron density of metal-oxo cluster as a way to harness HER activity.This study firstly demonstrates synergy of Hf-oxo clusters,thiol functionalities and heterojunction as an easy yet controllable strategy to form integrated photocatalyst.
基金supported by the National Natural Science Foundation of China(Nos.22276168 and 21876154)A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202456226)。
文摘Accelerating the separation of carriers in the heterojunction plays vital role in the photoelectrocatalytic(PEC)process,yet it remains a challenging undertaking.Herein,a MOF-on-MOF based dual S-scheme heterojunction(BiVO_(4)/NH_(2)-MIL-125(Ti)/NH_(2)-MIL-53(Fe),denoted as BVO/NM125/NM53)was rationally designed and prepared for PEC removing and detoxification of organic contaminants(phenol,tetracycline hydrochloride,ciprofloxacin and norfloxacin).The S-scheme heterojunction was double confirmed by DFT calculation and XPS analysis.The charge transfer resistance of BVO/NM125/NM53 photoanode decreases to 1/11 of bare BiVO_(4) photoanode.Meanwhile,the photocurrent densitywas 3 times higher,demonstrating a marked improvement in carrier separation efficiency due to dual S-scheme heterojunction.The photoanode achieved 94.3%removal of phenol within 60 min and maintained stable performance over 10 consecutive cycles,demonstrating good PEC efficiency and structural stability.The BVO/NM125/NM53 photoanode also showed effectiveness in removing antibiotics,with chlorophyll fluorescence imaging confirming a significant reduction in the ecotoxicity of intermediates.For example,wheat seed germination,growth,chlorophyll and Carotenoid production were not affected,which was similar to that of deionized water.Radical trapping experiments and electron paramagnetic resonance(EPR)analysis identified·O_(2)^(-)and·OH as the primary active species.This work demonstrates the effectiveness of developing MOF-on-MOF heterojunctions for visible-light response and enhancing charge separation in PEC.
基金supported by the Excellent Youth Program,Ningxia Hui Autonomous Region Natural Science Foundation Project(No.2022AAC05034)the Ningxia Low-Grade Resource High-Value Utilization and Environmental Chemical Integration Technology Innovation Team Project of Chinathe Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-Added Chemicals of China.
文摘The activity of photocatalysts can be significantly regulated by designing micro-scale interfacial heterojunctions. The present study demonstrates the skillful construction of a graphdiyne/Sr_(2)Co_(2)O_(5) S-scheme heterojunction, exhibiting exceptional stability, excellent proton adsorption, and remarkable photocatalytic activity. On the basis of in-situ XPS and calculation of work function, it is proved that the electron migration path between the interface of graphdiyne and Sr_(2)Co_(2)O_(5) conforms to the S-scheme heterojunction mechanism. The recombination rate of photogenerated carriers is significantly reduced by virtue of the synergistic effect of the internal electric field and band edge bending while preserving the inherent redox ability of the materials. The strong coupling between layered graphdiyne and hierarchical flower-like Sr_(2)Co_(2)O_(5) effectively enhances the specific surface area of graphdiyne/Sr_(2)Co_(2)O_(5) heterojunction, thereby facilitating H2O pre-adsorption. Combined with experiments and DFT calculations, it was found that both graphdiyne and Sr_(2)Co_(2)O_(5) have a direct band gap, which makes their electronic transitions without the assistance of phonons, thus improving the efficiency of solar energy conversion. This study offers insights into the potential application of graphdiyne and metal oxides in the field of photocatalytic hydrogen evolution.
基金Funded by the National Natural Science Foundation of China(No.22262012)the Foundation of Hubei Key Laboratory of Biologic Resources Protection and Utilization(No.PT012214)+1 种基金Science and Technology Research Project of Education Department of Hubei Province(No.D20221903)Enshi Science and Technology Plan Project(No.D20230090)。
文摘A BiOI/BiOBr S-scheme heterojunction photocatalyst was synthesized using a solvothermal method,and its ability to degrade Congo red was thoroughly investigated.The photocatalytic performance of the BiOI/BiOBr heterojunction was compared with that of pure BiOBr and BiOI.The structural,morphological,optical,and electrical properties of the samples were characterized using X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-vis diffuse reflectance spectroscopy(UV-vis DRS),and zeta potential analysis.The degradation rate of Congo red was determined by spectrophotometry,revealing that the BiOI/BiOBr S-scheme heterojunction exhibited excellent photocatalytic performance,achieving a degradation rate of 96.8%for a 50 mg/L Congo red solution within 75 minutes.This rate was significantly higher than those achieved by pure BiOBr(77.2%)and BiOI(83.1%).Theoretical calculations indicate that the S-scheme heterojunction effectively facilitates the separation of photogenerated charge carriers while preserving the strong redox ability of the composite.These characteristics are identified as the key factors underlying the superior photocatalytic degradation efficiency of the BiOI/BiOBr S-scheme heterostructure.
基金supported by the National Natural Science Foundation of China(Nos.22208262,52271228,52202298,52201279,51834009,and 51801151)the Natural Science Foundation of Shaanxi Province(Nos.2021JQ-468,2020JZ-47)+3 种基金the Natural Science Foundation of Shaanxi Provincial Department of Education(No.21JP086)the Postdoctoral Research Foundation of China(Nos.2020M683528 and 2018M633643XB)the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20230625)the Hundred Talent Program of Shaanxi Province.
文摘Developing heterojunction photocatalyst with well-matched interfaces andmultiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal,but still remains a great challenge.In present work,a new strategy of chloride anion intercalation in Bi_(2)O_(3)via one-pot hydrothermal process is proposed.The as-prepared Ta-BiOCl/Bi_(24)O_(31)Cl_(10)(TBB)heterojunctions are featured with Ta-Bi_(24)O_(31)Cl_(10)and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces.In this TBB heterojunctions,the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer andmultiple transfer paths,respectively,leading to enhanced visible light response and improved photogenerated charge separation.Meanwhile,a type-II heterojunction for photocharge separation has been obtained,in which photogenerated electrons are drove from the CB(conduction band)of Ta-Bi_(24)O_(31)Cl_(10)to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl,while the photogenerated holes are left on the VB(valence band)of Ta-Bi_(24)O_(31)Cl_(10),effectively hindering the recombination of photogenerated electron-hole pairs.Furthermore,the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species(·O_(2)^(−)).Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride(TCH)solution to Bi_(2)O_(3),Ta-BiOCl and Ta-Bi_(24)O_(31)Cl_(10).This work not only proposes a Ta-BiOCl/Bi_(24)O_(31)Cl_(10)shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-Ⅱheterojunction for highly efficient photocatalytic activity,but offers a new insight into the design of highly efficient heterojunction through phasestructure synergistic transformation strategy.