Brookhart-typeα-diimine nickel and palladium catalysts have been extensively studied over the past several decades;however,the heterogenization of these metal complexes has received much less attention.In this contri...Brookhart-typeα-diimine nickel and palladium catalysts have been extensively studied over the past several decades;however,the heterogenization of these metal complexes has received much less attention.In this contribution,we installed a trifluoroborate potassium substituent on anα-diimine framework.The ionic nature of trifluoroborate potassium endowed theα-diimine nickel complex with a strong affinity for the SiO_(2)support,while its electron-donating nature enhanced the catalyst stability and polyethylene molecular weight.In the presence of only 100 equiv.of Et2AlCl cocatalyst,the SiO_(2)-supported catalyst demonstrated significantly better performance than its homogeneous analog during ethylene polymerization,with extremely high activity(1.42–6.53×10^(7)g mol^(−1)h^(−1))and high thermal stability.The heterogeneous system led to the formation of high-molecular-weight polyethylenes(Mn 142,500–732,800 g/mol),narrow polydispersities(2.18–3.00),tunable branching densities(21–64 per 1000 carbon atoms),and great mechanical properties.Moreover,the efficient copolymerization of ethylene with comonomers such as methyl 10-undecenoate,6-chloro-1-hexene or 5-hexenylacetate was achieved.These superior properties enabled by the trifluoroborate potassium moiety may inspire its applications in other polymerization catalyst systems.展开更多
Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure.Despite the success of single atom catalyst synthesis,dire...Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure.Despite the success of single atom catalyst synthesis,directly anchoring metal single atoms on three-dimensional(3D)macro support,which is promising to achieve the heterogenization of homogeneous catalysis,remains a challenge and a blank in this field.Herein,we successfully fabricate metal single atoms(Pd,Pt,Ru,Au)on porous carbon nitride/reduced graphene oxide(C3N4/rGO)foam as highly efficient catalysts with convenient recyclability.C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion.The obtained Pdi/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction.Moreover,the Pdi/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1'-biphenyl through Suzuki-Miyaura coupling.展开更多
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, ...A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]〉 (bpy = 2,2'-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]〉 were well retained. The resulting Ru- containing hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.展开更多
The Keggin-type heteropolyacids(HPAs), as the new multifunctional catalysts,show excellent activity for various homogeneous reactions. In recent years, the HPAshave been applied to many industrial processes. Heterog...The Keggin-type heteropolyacids(HPAs), as the new multifunctional catalysts,show excellent activity for various homogeneous reactions. In recent years, the HPAshave been applied to many industrial processes. Heterogenization of the HPAswould make the homogeneous reactions heterogeneous, which is more easily applicableand has aroused great interest of chemists. This note reports the heterogenization of12-silicotungtic acid (SiW<sub>12</sub>)with the chemically treated bentonite as the support.展开更多
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in...A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.展开更多
Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in...Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in 2015 brought a marked advancement in the taxonomy of CRC,consolidating six classification systems into four novel subtypes,which focus on vital gene expression patterns and clinical and prognostic outcomes.However,nearly a decade of clinical experience with CMS classification has revealed fundamental limitations that underscore the inadequacy of any single classification system for capturing the full spectrum of CRC biology.The inherent challenges of the current paradigm are multifaceted.In the CMS classification,mixed phenotypes that remain unclassifiable constitute 13%of CRC cases.This reflects the remarkable heterogeneity that CRC shows.The tumor budding regions reflect the molecular shift due to CMS 2 to CMS 4 switching,causing further heterogeneity.Moreover,the reliance on bulk RNA sequencing fails to capture the spatial organization of molecular signatures within tumors and the critical contributions of the tumor microenvironment.Recent technological advances in spatial transcriptomics,singlecell RNA sequencing,and multi-omic integration have revealed the limitations of transcriptome-only classifications.The emergence of CRC intrinsic subtypes that attempt to remove microenvironmental contributions,pathway-derived subtypes,and stem cell-based classifications demonstrates the field’s recognition that multiple complementary classification systems are necessary.These newer molecular subtypes are not discrete categories but biological continua,thus highlighting that the vast molecular landscape is a tapestry of interlinked features,not rigid subtypes.Multiple technical hurdles cause difficulty in implementing the clinical translation of these newer molecular subtypes,including gene signature complexity,platform-dependent variations,and the difficulty of getting and preserving fresh frozen tissue.CMS 4 shows a poor prognostic outcome among the CMS subtypes,while CMS 1 is associated with poor survival in metastatic cases.However,the predictive value for definitive therapy remains subdued.Looking forward,the integration of artificial intelligence,liquid biopsy approaches,and real-time molecular monitoring promises to enable dynamic,multi-dimensional tumor characterization.The temporal and spatial complexity can only be captured by complementary molecular taxonomies rather than a single,unified system of CRC classification.Such an approach recognizes that different clinical questions–prognosis,treatment selection,resistance prediction–may require different molecular lenses,each optimized for specific clinical applications.This editorial advocates for a revolutionary change from pursuing a single“best”classification system toward a diverse approach that welcomes the molecular mosaic of CRC.Only through such comprehensive molecular characterization can we hope to achieve the promise of precision oncology for the diverse spectrum of patients with CRC.展开更多
Photocatalytic CO_(2)reduction into chemical fuels is a promising route for alleviating the energy crisis and environmental issues.However,reported catalysts still exhibit low catalytic efficiencies,which hinders the ...Photocatalytic CO_(2)reduction into chemical fuels is a promising route for alleviating the energy crisis and environmental issues.However,reported catalysts still exhibit low catalytic efficiencies,which hinders the development of this important reaction.Herein,we report the heterogenization of a dinuclear cobalt molecular catalyst into two porous polymers(Co_(2)-P1 and Co_(2)-P2)using a covalent strategy for photocatalytic CO_(2)reduction.As a result,Co_(2)-P1 with a phenyl group as the linker exhibited high catalytic performance for the photochemical CO_(2)-to-CO conversion with a CO production rate of 568.8 mmol g-1 h-1 and turnover frequency(TOF)of 11.6 min-1(CO selectivity,95.2%).More impressively,by extending the phenyl to biphenyl linker,the resulting Co_(2)-P2 shows obviously enhanced photocatalytic efficiency for CO_(2)reduction to CO,with a record CO production rate of 1063.0 mmol g-1 h-1 and TOF of 23.6 min-1(CO selectivity,94.9%)under a laboratory light source.Furthermore,Co_(2)-P2 also shows outstanding catalytic activity for photocatalytic CO_(2)reduction under natural sunlight,with a CO production rate of 544.1 mmol g-1 h-1 and TOF of 12.1 min-1(CO selectivity,97.2%).Systematic studies demonstrated that fast electron transfer from the photosensitizer to the catalyst greatly contributes to the superior catalytic activity of Co_(2)-P2.展开更多
Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More r...Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.展开更多
Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffer...Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi...Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.展开更多
Developing high-performance alloys with gigapascal strength and excellent ductility is crucial for modern engineering applications.The concept of multi-component high/medium entropy alloys(H/MEAs)provides an innovativ...Developing high-performance alloys with gigapascal strength and excellent ductility is crucial for modern engineering applications.The concept of multi-component high/medium entropy alloys(H/MEAs)provides an innovative approach to designing such alloys.In this work,we developed the Co_(1.5)CrNi_(1.5)Al_(0.2)Ti_(0.2)MEA,which exhibits outstanding mechanical properties at room temperature through low-temperature pre-aging followed by annealing treatment.Tensile testing reveals that the MEA possesses an ultrahigh yield strength of 20±0785 MPa,an ultimate tensile strength of 2365±70 MPa,and exceptional ductility of 15.8%±1.7%.The superior tensile properties are attributed to the formation of fully recrystal-lized heterogeneous structures(HGS)composed of ultrafine grain(UFG)and fine grain(FG)regions,along with discontinuous precipitation of coherent nano-size lamellar L1_(2)precipitates.The mechanical incompatibility between the UFG region and the FG regions during deformation induces the accumulation of a large number of geometrically necessary dislocations at the interface,resulting in strain distribution and hetero-deformation-induced(HDI)stress accumulation,contributing significantly to HDI strengthening.HDI strengthening,precipitation strengthening,and grain boundary strengthening are the primary mechanisms responsible for the ultra-high yield strength of the MEA.During deformation,the dominant deformation mechanisms include dislocation slip,deformation-induced stacking faults,and Lomer-Cottrell locks,with minor deformation twinning.The synergistic interaction of these multiple deformation modes provides the MEA with excellent work hardening capability,delaying plastic instability and achieving an excellent combination of strength and ductility.This study provides an effective strategy for synergistically strengthening MEAs by combining HDI strengthening with traditional strengthening mechanisms.These findings pave the way for the development of advanced structural materials with high performance tailored for demanding applications in engineering.展开更多
Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different educ...Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.展开更多
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit...Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.展开更多
Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti...Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.展开更多
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca...Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the h...It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.展开更多
The effects of micro-ridge-furrow planting(MR)on yield and the efficiency of light,water,and thermal resource use in rapeseed were tested in a three-year field experiment comparing MR to conventional flat planting.MR ...The effects of micro-ridge-furrow planting(MR)on yield and the efficiency of light,water,and thermal resource use in rapeseed were tested in a three-year field experiment comparing MR to conventional flat planting.MR enhanced canopy heterogeneity by altering the leaf angle between plants on ridges and furrows.The heterogeneous canopy environment increased intercepted photosynthetic active radiation,alleviated canopy temperature stress,and optimized canopy humidity,leading to improvements in light-nitrogen matching and net photosynthetic rate.Consequently,dry matter and yield increased by 13.0%and 11.0%,respectively,while radiation,thermal,and precipitation utilization efficiency increased by 12.3%-16.2%.The corresponding improvements in yield and resource use efficiency were attributed to a heterogeneous canopy environment that improved microclimatic conditions.展开更多
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ...In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.展开更多
基金supported by National Key R&D Program of China(No.2021YFA1501700)National Natural Science Foundation of China(Nos.52025031,U19B6001 and U1904212)K.C.Wong Education Foundation.
文摘Brookhart-typeα-diimine nickel and palladium catalysts have been extensively studied over the past several decades;however,the heterogenization of these metal complexes has received much less attention.In this contribution,we installed a trifluoroborate potassium substituent on anα-diimine framework.The ionic nature of trifluoroborate potassium endowed theα-diimine nickel complex with a strong affinity for the SiO_(2)support,while its electron-donating nature enhanced the catalyst stability and polyethylene molecular weight.In the presence of only 100 equiv.of Et2AlCl cocatalyst,the SiO_(2)-supported catalyst demonstrated significantly better performance than its homogeneous analog during ethylene polymerization,with extremely high activity(1.42–6.53×10^(7)g mol^(−1)h^(−1))and high thermal stability.The heterogeneous system led to the formation of high-molecular-weight polyethylenes(Mn 142,500–732,800 g/mol),narrow polydispersities(2.18–3.00),tunable branching densities(21–64 per 1000 carbon atoms),and great mechanical properties.Moreover,the efficient copolymerization of ethylene with comonomers such as methyl 10-undecenoate,6-chloro-1-hexene or 5-hexenylacetate was achieved.These superior properties enabled by the trifluoroborate potassium moiety may inspire its applications in other polymerization catalyst systems.
基金This work was supported by the National Key R&D Program of China(No.2018YFA0702003)the National Natural Science Foundation of China(No.21890383,21971137)Beijing Municipal Science&Technology Commission(No.Z191100007219003)。
文摘Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure.Despite the success of single atom catalyst synthesis,directly anchoring metal single atoms on three-dimensional(3D)macro support,which is promising to achieve the heterogenization of homogeneous catalysis,remains a challenge and a blank in this field.Herein,we successfully fabricate metal single atoms(Pd,Pt,Ru,Au)on porous carbon nitride/reduced graphene oxide(C3N4/rGO)foam as highly efficient catalysts with convenient recyclability.C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion.The obtained Pdi/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction.Moreover,the Pdi/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1'-biphenyl through Suzuki-Miyaura coupling.
基金The authors are grateful to the financial support of the National Basic Research Program of China (Nos. 2011CBA00502 and 2014CB260410), National Natural Science Foundation of China (Nos. 21403238, 21373050, U1305242, and 21471151) and Major Project of Fujian Province (No. 2014H0053).
文摘A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]〉 (bpy = 2,2'-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]〉 were well retained. The resulting Ru- containing hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.
文摘The Keggin-type heteropolyacids(HPAs), as the new multifunctional catalysts,show excellent activity for various homogeneous reactions. In recent years, the HPAshave been applied to many industrial processes. Heterogenization of the HPAswould make the homogeneous reactions heterogeneous, which is more easily applicableand has aroused great interest of chemists. This note reports the heterogenization of12-silicotungtic acid (SiW<sub>12</sub>)with the chemically treated bentonite as the support.
基金supported by the National Natural Science Foundation of China(22074072,22274083,52376199)the Shandong Provincial Natural Science Foundation(ZR2023LZY005)+1 种基金the Exploration Project of the State Key Laboratory of BioFibers and EcoTextiles of Qingdao University(TSKT202101)the Fundamental Research Funds for the Central Universities(2022BLRD13,2023BLRD01).
文摘A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
文摘Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in 2015 brought a marked advancement in the taxonomy of CRC,consolidating six classification systems into four novel subtypes,which focus on vital gene expression patterns and clinical and prognostic outcomes.However,nearly a decade of clinical experience with CMS classification has revealed fundamental limitations that underscore the inadequacy of any single classification system for capturing the full spectrum of CRC biology.The inherent challenges of the current paradigm are multifaceted.In the CMS classification,mixed phenotypes that remain unclassifiable constitute 13%of CRC cases.This reflects the remarkable heterogeneity that CRC shows.The tumor budding regions reflect the molecular shift due to CMS 2 to CMS 4 switching,causing further heterogeneity.Moreover,the reliance on bulk RNA sequencing fails to capture the spatial organization of molecular signatures within tumors and the critical contributions of the tumor microenvironment.Recent technological advances in spatial transcriptomics,singlecell RNA sequencing,and multi-omic integration have revealed the limitations of transcriptome-only classifications.The emergence of CRC intrinsic subtypes that attempt to remove microenvironmental contributions,pathway-derived subtypes,and stem cell-based classifications demonstrates the field’s recognition that multiple complementary classification systems are necessary.These newer molecular subtypes are not discrete categories but biological continua,thus highlighting that the vast molecular landscape is a tapestry of interlinked features,not rigid subtypes.Multiple technical hurdles cause difficulty in implementing the clinical translation of these newer molecular subtypes,including gene signature complexity,platform-dependent variations,and the difficulty of getting and preserving fresh frozen tissue.CMS 4 shows a poor prognostic outcome among the CMS subtypes,while CMS 1 is associated with poor survival in metastatic cases.However,the predictive value for definitive therapy remains subdued.Looking forward,the integration of artificial intelligence,liquid biopsy approaches,and real-time molecular monitoring promises to enable dynamic,multi-dimensional tumor characterization.The temporal and spatial complexity can only be captured by complementary molecular taxonomies rather than a single,unified system of CRC classification.Such an approach recognizes that different clinical questions–prognosis,treatment selection,resistance prediction–may require different molecular lenses,each optimized for specific clinical applications.This editorial advocates for a revolutionary change from pursuing a single“best”classification system toward a diverse approach that welcomes the molecular mosaic of CRC.Only through such comprehensive molecular characterization can we hope to achieve the promise of precision oncology for the diverse spectrum of patients with CRC.
基金supported by National Key R&D Program of China(grant no.2022YFA1502902)the National Natural Science Foundation of China(grant nos.22371208,22271218,22071182,and 21931007)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(grant no.2018KJ129).
文摘Photocatalytic CO_(2)reduction into chemical fuels is a promising route for alleviating the energy crisis and environmental issues.However,reported catalysts still exhibit low catalytic efficiencies,which hinders the development of this important reaction.Herein,we report the heterogenization of a dinuclear cobalt molecular catalyst into two porous polymers(Co_(2)-P1 and Co_(2)-P2)using a covalent strategy for photocatalytic CO_(2)reduction.As a result,Co_(2)-P1 with a phenyl group as the linker exhibited high catalytic performance for the photochemical CO_(2)-to-CO conversion with a CO production rate of 568.8 mmol g-1 h-1 and turnover frequency(TOF)of 11.6 min-1(CO selectivity,95.2%).More impressively,by extending the phenyl to biphenyl linker,the resulting Co_(2)-P2 shows obviously enhanced photocatalytic efficiency for CO_(2)reduction to CO,with a record CO production rate of 1063.0 mmol g-1 h-1 and TOF of 23.6 min-1(CO selectivity,94.9%)under a laboratory light source.Furthermore,Co_(2)-P2 also shows outstanding catalytic activity for photocatalytic CO_(2)reduction under natural sunlight,with a CO production rate of 544.1 mmol g-1 h-1 and TOF of 12.1 min-1(CO selectivity,97.2%).Systematic studies demonstrated that fast electron transfer from the photosensitizer to the catalyst greatly contributes to the superior catalytic activity of Co_(2)-P2.
基金supported by the National Natural Science Foundation of China,Nos.82404892(to QY),82061160374(to ZZ)the Science and Technology Development Fund,Macao Special Administrative Region,China,Nos.0023/2020/AFJ,0035/2020/AGJ+2 种基金the University of Macao Research Grant,Nos.MYRG2022-00248-ICMS,MYRG-CRG2022-00010-ICMS(to MPMH)the Natural Science Foundation of Guangdong Province,No.2024A1515012818(to ZZ)the Fundamental Research Funds for the Central Universities,No.21623114(to ZZ).
文摘Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 21273227 and 21403258) and the Strategic Priority Research Program of the Chinese Academy of Science (Grant Nos XDB 17020400).
文摘Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金supported by the National Natural Science Foundation of China(Nos.52377026 and 52301192)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+3 种基金the Postdoctoral Fellow-ship Program of CPSF under Grant Number(No.GZB20240327)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202400275)the Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603800)the National Natural Science Foundation of China(No.12274362).
文摘Developing high-performance alloys with gigapascal strength and excellent ductility is crucial for modern engineering applications.The concept of multi-component high/medium entropy alloys(H/MEAs)provides an innovative approach to designing such alloys.In this work,we developed the Co_(1.5)CrNi_(1.5)Al_(0.2)Ti_(0.2)MEA,which exhibits outstanding mechanical properties at room temperature through low-temperature pre-aging followed by annealing treatment.Tensile testing reveals that the MEA possesses an ultrahigh yield strength of 20±0785 MPa,an ultimate tensile strength of 2365±70 MPa,and exceptional ductility of 15.8%±1.7%.The superior tensile properties are attributed to the formation of fully recrystal-lized heterogeneous structures(HGS)composed of ultrafine grain(UFG)and fine grain(FG)regions,along with discontinuous precipitation of coherent nano-size lamellar L1_(2)precipitates.The mechanical incompatibility between the UFG region and the FG regions during deformation induces the accumulation of a large number of geometrically necessary dislocations at the interface,resulting in strain distribution and hetero-deformation-induced(HDI)stress accumulation,contributing significantly to HDI strengthening.HDI strengthening,precipitation strengthening,and grain boundary strengthening are the primary mechanisms responsible for the ultra-high yield strength of the MEA.During deformation,the dominant deformation mechanisms include dislocation slip,deformation-induced stacking faults,and Lomer-Cottrell locks,with minor deformation twinning.The synergistic interaction of these multiple deformation modes provides the MEA with excellent work hardening capability,delaying plastic instability and achieving an excellent combination of strength and ductility.This study provides an effective strategy for synergistically strengthening MEAs by combining HDI strengthening with traditional strengthening mechanisms.These findings pave the way for the development of advanced structural materials with high performance tailored for demanding applications in engineering.
基金Under the auspices of Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-196)。
文摘Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.
基金supported by National Natural Science Foundation of China(22178258,22308254)China Postdoctoral Science Foundation(2023M742593,2024T170642)+1 种基金Independent Innova-tion Fund of Tianjin University(2024XQM-0021)the Open Fund of the Key Laboratory of Functional Molecular Solids(FMS2023006)。
文摘Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.
基金support for this work by Hebei Education Department(No.JZX2024004)Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.236Z1404G)+3 种基金the National Natural Science Foundation of China(Nos.22301060 and 21272053)China Postdoctoral Science Foundation(No.2023M730914)the Natural Science Foundation of Hebei Province(Biopharmaceutical Joint Fund No.B2022206008)Project of Science and Technology Department of Hebei Province(No.22567622H)。
文摘Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.
基金support from the National Natural Science Foundation of China(No:52061040)China Postdoctoral Science Foundation(No:2021M692512)+1 种基金Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province(No:2023CL01)Open Projects of Key Laboratory of Advanced Technologies of Materials,Ministry of Education China,Southwest Jiaotong University(No:KLATM202003).
文摘Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by the National Natural Science Foundation of China(grant no.52371029)the Science and Technology Development Program of Jilin Province,China(grant no.20210402083GH).
文摘It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.
基金supported by the National Key Research and Development Program of China (2021YFD1901200)the Key Research and Development Program of Hubei Province of China (2023BBB028)+1 种基金the Earmarked Fund of Hubei province of Chinathe Fundamental Research Funds for the Central Universities (2662024ZKQD005)
文摘The effects of micro-ridge-furrow planting(MR)on yield and the efficiency of light,water,and thermal resource use in rapeseed were tested in a three-year field experiment comparing MR to conventional flat planting.MR enhanced canopy heterogeneity by altering the leaf angle between plants on ridges and furrows.The heterogeneous canopy environment increased intercepted photosynthetic active radiation,alleviated canopy temperature stress,and optimized canopy humidity,leading to improvements in light-nitrogen matching and net photosynthetic rate.Consequently,dry matter and yield increased by 13.0%and 11.0%,respectively,while radiation,thermal,and precipitation utilization efficiency increased by 12.3%-16.2%.The corresponding improvements in yield and resource use efficiency were attributed to a heterogeneous canopy environment that improved microclimatic conditions.
基金supported by the National Defense Fundamental Research Project(No.JCKY2022404C005)the Nuclear Energy Development Project(No.23ZG6106)+1 种基金the Sichuan Scientific and Technological Achievements Transfer and Transformation Demonstration Project(No.2023ZHCG0026)the Mianyang Applied Technology Research and Development Project(No.2021ZYZF1005)。
文摘In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements.