An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster head...An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.展开更多
Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how...The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.展开更多
Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these pro...Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these protocols, cluster-based routing protocols are found to be more energy efficient. A cluster head is selected to aggregate the data received from root nodes and forwards these data to the base station in cluster-based routing. The selection of cluster heads should be efficient to save energy. In our proposed protocol, we use static clustering for the efficient selection of cluster heads. The proposed routing protocol works efficiently in large as well as small areas. For an optimal number of cluster head selection we divide a large sensor field into rectangular clusters. Then these rectangular clusters are further grouped into zones for efficient communication between cluster heads and a base station. We perform MATLAB simulations to observe the network stability, throughput, energy consumption, network lifetime and the number of cluster heads. Our proposed routing protocol outperforms in large areas in comparison with the LEACH, MH-LEACH, and SEP routing protocols.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide...Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.展开更多
The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs...The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).展开更多
Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider ...Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider the living time of the sensor network under the influences of the small-scale landslide. We investigate the performance of famous energy-efficient routing protocol PEGASIS in both landslide case and non-landslide case. Genetic Algorithm is also applied to enhance the effectiveness of PEGASIS. The simulation results in this paper showed that the Genetic Algorithm helps to delay the first node death if it is used at the beginning of data transmission while being used every round helps to prolong last node death slightly. The impact of the Genetic Algorithm on energy usage and route length is also examined.<span><span><span> </span></span></span><span><span><span>Under the effect of landslide, with only 70% of energy </span></span></span><span><span><span>are</span></span></span><span><span><span> spent, the simulated protocols reduced around 30% equivalent route length while managed to keep the living time up the network up to 90.76%, comparing to cases with no landslide.</span></span></span>展开更多
Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of ...Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.展开更多
Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this p...Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.展开更多
Many advances have been made in sensor technologies which are as varied as the applications;and many more are in progress. It has been reasonable to design and develop small size sensor nodes of low cost and low power...Many advances have been made in sensor technologies which are as varied as the applications;and many more are in progress. It has been reasonable to design and develop small size sensor nodes of low cost and low power. In this work, we have explored some energy-efficient routing protocols (LEACH, Directed Diffusion, Gossiping and EESR) and their expansions (enhancements), and furthermore, their tactics specific to wireless sensor network, such as data aggregation and in-network processing, clustering, different node role assignment, and data-centric methods. After that we have compared these explored routing protocols based on different metrics that affect the specific application requirements and WSN in general.展开更多
This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at ...This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.展开更多
In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless...In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms.展开更多
Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource...Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.展开更多
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing ...In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.展开更多
Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requireme...Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.展开更多
A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in ...A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in a coordinated way. Employing clustering techniques in such networks can achieve balanced energy consumption of member nodes and prolong the network lifetimes.In classical clustering techniques, clustering and in-cluster data routes are usually separated into independent operations. Although separate considerations of these two issues simplify the system design, it is often the non-optimal lifetime expectancy for wireless sensor networks. This paper proposes an integral framework that integrates these two correlated items in an interactive entirety. For that,we develop the clustering problems using nonlinear programming. Evolution process of clustering is provided in simulations. Results show that our joint-design proposal reaches the near optimal match between member nodes and cluster heads.展开更多
LEACH protocol randomly selects cluster head nodes in a cyclic manner. It may cause network to be unstable, if the low energy node is elected as the cluster head. If the size of cluster is too large or too small, it w...LEACH protocol randomly selects cluster head nodes in a cyclic manner. It may cause network to be unstable, if the low energy node is elected as the cluster head. If the size of cluster is too large or too small, it will affect the survival time of the network. To address this issue, an improved solution was proposed. Firstly, the scheme considered the average and standard deviation of the nodes’ residual energy and the distance between the node and the base station, then considered the distance between the node and the cluster head and the energy of the cluster head to optimize the cluster head selection and clustering. The performance analysis results showed this scheme could reduce premature deaths of the cluster heads and too high energy consumption of some clusters. Thus, the proposed algorithm could prompt the stability and prolong the lifetime of the network.展开更多
The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like t...The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.展开更多
文摘An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
基金supported by the National Natural Science Foundation of China(Grant No.61571303,No.61571004)the Shanghai Natural Science Foundation(Grant No.21ZR1461700)+3 种基金the Shanghai Sailing Program(Grant No.19YF1455800)the National Science and Technology Major Project of China(No.2018ZX03001031)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(Grant No.PAL-N201703)the National Key Research and Development Program of China-Internet of Things and Smart City Key Program(No.2019YFB2101600,NO.2019YFB2101602,No.2019YFB2101602-03).
文摘The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.
文摘Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these protocols, cluster-based routing protocols are found to be more energy efficient. A cluster head is selected to aggregate the data received from root nodes and forwards these data to the base station in cluster-based routing. The selection of cluster heads should be efficient to save energy. In our proposed protocol, we use static clustering for the efficient selection of cluster heads. The proposed routing protocol works efficiently in large as well as small areas. For an optimal number of cluster head selection we divide a large sensor field into rectangular clusters. Then these rectangular clusters are further grouped into zones for efficient communication between cluster heads and a base station. We perform MATLAB simulations to observe the network stability, throughput, energy consumption, network lifetime and the number of cluster heads. Our proposed routing protocol outperforms in large areas in comparison with the LEACH, MH-LEACH, and SEP routing protocols.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
文摘Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.
文摘The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).
文摘Wireless sensor network has been used as a landslide monitoring tool for more than one decade. The robustness of the network is important as the systems need to survive in harsh conditions. In this paper, we consider the living time of the sensor network under the influences of the small-scale landslide. We investigate the performance of famous energy-efficient routing protocol PEGASIS in both landslide case and non-landslide case. Genetic Algorithm is also applied to enhance the effectiveness of PEGASIS. The simulation results in this paper showed that the Genetic Algorithm helps to delay the first node death if it is used at the beginning of data transmission while being used every round helps to prolong last node death slightly. The impact of the Genetic Algorithm on energy usage and route length is also examined.<span><span><span> </span></span></span><span><span><span>Under the effect of landslide, with only 70% of energy </span></span></span><span><span><span>are</span></span></span><span><span><span> spent, the simulated protocols reduced around 30% equivalent route length while managed to keep the living time up the network up to 90.76%, comparing to cases with no landslide.</span></span></span>
文摘Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.
文摘Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.
文摘Many advances have been made in sensor technologies which are as varied as the applications;and many more are in progress. It has been reasonable to design and develop small size sensor nodes of low cost and low power. In this work, we have explored some energy-efficient routing protocols (LEACH, Directed Diffusion, Gossiping and EESR) and their expansions (enhancements), and furthermore, their tactics specific to wireless sensor network, such as data aggregation and in-network processing, clustering, different node role assignment, and data-centric methods. After that we have compared these explored routing protocols based on different metrics that affect the specific application requirements and WSN in general.
文摘This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.
文摘In this paper, an advanced distributed energy-efficient clustering (ADEEC) protocol was proposed with the aim of balancing energy consumption across the nodes to achieve longer network lifetime for In-Vehicle Wireless Sensor Networks (IVWSNs). The algorithm changes the cluster head selection probability based on residual energy and location distribution of nodes. Then node associate with the cluster head with least communication cost and high residual energy. Simulation results show that ADEEC achieves longer stability period, network lifetime,and throughput than the other classical clustering algorithms.
文摘Advance development of wireless technologies and micro-sensor systems have enabled Wireless Sensor Network (WSN) to emerge as a leading solution in many crucial sensor-based applications. WSN deploys numerous resource-constrained sensor nodes which have limited power supply, memory and computation capability in a harsh environment. Inefficient routing strategy results in degraded network performance in terms of reliability, latency and energy efficiency. In this paper, a cross-layer design, Contention-based MAC and Routing protocol is proposed, termed Contention/SNIR-Based Forwarding (CSBF) protocol. CSBF utilizes the geographical information of sensor nodes to effectively guide the routing direction towards destination node, thereby enhancing reliability. Furthermore, Signal-to-Noise-plus-Interference Ratio (SNIR) metric is used as a routing parameter to guarantee high quality link for data transmission. A Contention-Winner Relay scheme is utilized to reduce the delays caused by the contention procedure. Energy efficiency is also improved by introducing sleep mode technique in CSBF. The simulation work is carried out via OMNeT++ network simulator. The performance of CSBF is compared with other existing routing protocols such as AODV and DSDV in terms of packet delivery ratio (PDR), average end-to-end (ETE) delay and energy consumption per packet. Simulation results highlight that CSBF outperforms AODV and DSDV protocols in respect of PDR and energy efficiency. CSBF also has the most consistent overall network performance.
基金Acknowledgements Supported by the Fundamental Research Funds for the Central Universities(72104988), The National High Technology Research and Development Program of China ( 2009AA01 Z204, 2007AA01Z429, 2007AA01Z405), The post doctor science foundation of China (20090451495, 20090461415) The National Natural science foundation of China (60874085, 60633020, 60803151 ), The Natural Science Basic Research Plan in Shaanxi Province of China (Program No. SJ08F13), The Aviation Sci- ence Foundation of China (2007ZD31003, 2008ZD31001 )
文摘In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.
文摘Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.
基金supported by National Natural Science Foundation of China(Nos.61304131 and 61402147)Grant of China Scholarship Council(No.201608130174)+2 种基金Natural Science Foundation of Hebei Province(Nos.F2016402054 and F2014402075)the Scientific Research Plan Projects of Hebei Education Department(Nos.BJ2014019,ZD2015087 and QN2015046)the Research Program of Talent Cultivation Project in Hebei Province(No.A2016002023)
文摘A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in a coordinated way. Employing clustering techniques in such networks can achieve balanced energy consumption of member nodes and prolong the network lifetimes.In classical clustering techniques, clustering and in-cluster data routes are usually separated into independent operations. Although separate considerations of these two issues simplify the system design, it is often the non-optimal lifetime expectancy for wireless sensor networks. This paper proposes an integral framework that integrates these two correlated items in an interactive entirety. For that,we develop the clustering problems using nonlinear programming. Evolution process of clustering is provided in simulations. Results show that our joint-design proposal reaches the near optimal match between member nodes and cluster heads.
文摘LEACH protocol randomly selects cluster head nodes in a cyclic manner. It may cause network to be unstable, if the low energy node is elected as the cluster head. If the size of cluster is too large or too small, it will affect the survival time of the network. To address this issue, an improved solution was proposed. Firstly, the scheme considered the average and standard deviation of the nodes’ residual energy and the distance between the node and the base station, then considered the distance between the node and the cluster head and the energy of the cluster head to optimize the cluster head selection and clustering. The performance analysis results showed this scheme could reduce premature deaths of the cluster heads and too high energy consumption of some clusters. Thus, the proposed algorithm could prompt the stability and prolong the lifetime of the network.
文摘The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.