Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and...Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and health impacts of aerosols.However,our knowledge on this heterogeneous chemistry remains inadequate.In this study,the heterogeneous oxidation ofα-pinene ozonolysis SOA by hydroxyl(OH)radicals was investigated under both low and high relative humidity(RH)conditions,with an emphasis on the evolution of molecular composition of SOA and its RH dependence.It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60%at 25%RH and 95%at 90%RH.The heterogeneous oxidation strongly changes the molecular composition of SOA.The dimer-to-monomer signal ratios increase dramatically with rising OH exposure,in particular under high RH conditions,suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers.In addition,the typical SOA tracer compounds such as pinic acid,pinonic acid,hydroxy pinonic acid and dimer esters(e.g.,C17H26O8 and C19H28O7)have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions,which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods.Our study sheds lights on the heterogeneous oxidation chemistry ofmonoterpene SOA andwould help to understand their evolution and impacts in the atmosphere.展开更多
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial impo...The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal;however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(Ⅲ) by solid oxidants such as manganese oxide, and the adsorption of As(Ⅴ)accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(Ⅲ). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(Ⅴ). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants(DWTPs).This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.展开更多
Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace r...Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catal...Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catalyst(Fe Ox/SBAC) by a simple impregnation method.The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater(CGW). The results indicated that the prepared Fe Ox/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide p H range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1 g/L of catalyst, and the treated effluent concentrations of COD, total phenols,BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated Fe Ox/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, Fe Ox/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by Fe Ox/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.展开更多
The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used ...The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.展开更多
This article briefly reviewed the advances in the process of the direct oxidation of methane to methanol (DMTM) with both heterogeneous and homogeneous oxidation. Attention was paid to the conversion of methane by t...This article briefly reviewed the advances in the process of the direct oxidation of methane to methanol (DMTM) with both heterogeneous and homogeneous oxidation. Attention was paid to the conversion of methane by the heterogeneous oxidation process with various transition metal ox‐ides. The most widely studied catalysts are based on molybdenum and iron. For the homogeneous gas phase oxidation, several process control parameters were discussed. Reactor design has the most crucial role in determining its commercialization. Compared to the above two systems, aque‐ous homogenous oxidation is an efficient route to get a higher yield of methanol. However, the cor‐rosive medium in this method and its serious environmental pollution hinder its widespread use. The key challenge to the industrial application is to find a green medium and highly efficient cata‐lysts.展开更多
A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and m...A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.展开更多
With the aim of deep desulfurization, silica-supported polyoxometalate-based ionic liquids were successfully prepared by a one-pot hydrothermal process and employed in heterogeneous oxidative desulfurization of variou...With the aim of deep desulfurization, silica-supported polyoxometalate-based ionic liquids were successfully prepared by a one-pot hydrothermal process and employed in heterogeneous oxidative desulfurization of various sulfur compounds. The compositions and structures of the hybrid samples were characterized by various methods such as FT-IR, XPS, Raman,UV–Vis, wide-angle XRD and N2adsorption–desorption. The experimental results indicated that the hybrid materials presented a high dispersion of tungsten species and excellent catalytic activity for the removal of 4,6-dimethyldibenzothiophene without any organic solvent as extractant, and the sulfur removal could reach 100.0% under mild conditions.The catalytic performance on various substrates was also investigated in detail. After cycling seven cycles, the sulfur removal of the heterogeneous system still reached 93.0%. The GC-MS analysis results demonstrated that the sulfur compound was first adsorbed by the catalyst and subsequently oxidized to its corresponding sulfone.展开更多
In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5...In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.展开更多
Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a C...Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 ℃, 20 MPa, and reaction time 180 min. The WAO (lst step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ±4)% TOC removal and (78.4 ± 13.2)% conversion of the initial organic-N into NH4+-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.展开更多
In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterog...In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterogeneous peroxymonosulfate(PMS)activation.The performance of CO_3O_4 / mGO/PMS system was investigated using acid orange 7(AO7).Results showed that Co_3O_4/mGO-3 had the best degradation efficiency of AO7 and the removal rate was above 90%in about 6 min.The phenomenon indicated the catalytic activity of Co_3O_4/mGO composites was related to the oxidation degree of graphite oxide(GO).In addition,experiments showed the content of Co_3O_4 had an effect on the catalytic activity.The composites were characterized with X-ray powder diffraction(XRD),FTIR,Raman,X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).According to the charactrization and synergistic catalytic mechanism,the generation of Co—OH complexes found to be the initial step to activate PMS in the heterogeneous system of Co_3O_4/mGO hybrid.展开更多
Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalyti...Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.展开更多
Heterogeneous reactions of SO2 on ZnO particle surfaces were studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The influences of relative humidity (RH) and UV radiation (...Heterogeneous reactions of SO2 on ZnO particle surfaces were studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The influences of relative humidity (RH) and UV radiation (2= 365 nm) were investigated. In the absence of UV radiation, sulfite was the prominent product on the particle surfaces, and a negative relationship between RH and sulfite production was observed. In the presence of UV radiation, infrared (IR) absorption of sulfite and sulfate was evident in the spectra. With increasing RH or UV intensity, sulfite was gradually transformed into sulfate. UV intensity and RH exhibited a synergistic effect on the heterogeneous oxidation of SO2 on ZnO. On dry particles and with no UV radiation, the reaction order of SO2 on ZnO particles was 1.6. The initial uptake coefficient for the formation of sulfite, using the Brunauer-Emmett-Teller (BET) area as the reactive surface area of SO2, was 4.87 × 10^-6. At 40% RH and with UV radiation, the reaction order was 0.91, and the initial uptake coefficient was 2.29 ×10^-5.展开更多
The liquid-phase oxidation of ethylamine with hydrogen peroxide was studied over tungsten-doped zeolites to develop a clean and simple route for producing acetaldehyde oxime. The investigations were firstly performed ...The liquid-phase oxidation of ethylamine with hydrogen peroxide was studied over tungsten-doped zeolites to develop a clean and simple route for producing acetaldehyde oxime. The investigations were firstly performed over W/MOR, where the coordinated state as well as the acidity of the W species were characterized. The reaction parameters, including H_2O_2 amount, solvent,temperature, tungsten content as well as catalyst amount, governed the activity and oxime selectivity. Under optimized reaction conditions, W/MOR showed an ethylamine conversion and corresponding oxime selectivity of 18.3% and 88.9%. W/MOR showed a superior performance in comparison to other tungsten-containing zeolites of W/Beta, W/MWW and W/Y. Although W/MOR exhibited lower amine conversion than titanosilicates of TS-1 and Ti-MWW, it gave higher selectivity to the main product of oxime. Moreover, W/MOR proved to be a robust catalyst, exhibiting a stable catalytic performance after being reused at least for 5 times.展开更多
基金supported by the National Natural Science Foundation of China (Nos.22022607 and 42005090)the Shanghai Pujiang Program (No.20PJ1407600)。
文摘Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and health impacts of aerosols.However,our knowledge on this heterogeneous chemistry remains inadequate.In this study,the heterogeneous oxidation ofα-pinene ozonolysis SOA by hydroxyl(OH)radicals was investigated under both low and high relative humidity(RH)conditions,with an emphasis on the evolution of molecular composition of SOA and its RH dependence.It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60%at 25%RH and 95%at 90%RH.The heterogeneous oxidation strongly changes the molecular composition of SOA.The dimer-to-monomer signal ratios increase dramatically with rising OH exposure,in particular under high RH conditions,suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers.In addition,the typical SOA tracer compounds such as pinic acid,pinonic acid,hydroxy pinonic acid and dimer esters(e.g.,C17H26O8 and C19H28O7)have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions,which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods.Our study sheds lights on the heterogeneous oxidation chemistry ofmonoterpene SOA andwould help to understand their evolution and impacts in the atmosphere.
基金supported by the National Natural Science Foundation of China (No. 51925807)。
文摘The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal;however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(Ⅲ) by solid oxidants such as manganese oxide, and the adsorption of As(Ⅴ)accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(Ⅲ). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(Ⅴ). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants(DWTPs).This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.
基金the financial support provided by the National Natural Science Foundation of China(Nos.21277004,21190051,41121004)the Beijing Natural Science Foundation(No.8132035)+1 种基金the Fujitsu Laboratories Limited Foundation(No.k120400)the Special Fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control(2015)
文摘Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No.2015DX02)
文摘Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catalyst(Fe Ox/SBAC) by a simple impregnation method.The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater(CGW). The results indicated that the prepared Fe Ox/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide p H range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1 g/L of catalyst, and the treated effluent concentrations of COD, total phenols,BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated Fe Ox/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, Fe Ox/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by Fe Ox/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.
基金supported by the National Natural Science Foundation of China(Nos.21107125,21577160,51290282,51221892)the National Basic Research Program(973s)of China(No.2011CB933704)the Hjalmar Lundbom Research Center at Lulea niversity of Technology
文摘The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.
基金supported by the Petrochemical Joint Funds of NSFC-CNPC (U1362202)the Postgraduate Innovation Project of China University of Petroleum (East China) (YCXJ2016030)~~
文摘This article briefly reviewed the advances in the process of the direct oxidation of methane to methanol (DMTM) with both heterogeneous and homogeneous oxidation. Attention was paid to the conversion of methane by the heterogeneous oxidation process with various transition metal ox‐ides. The most widely studied catalysts are based on molybdenum and iron. For the homogeneous gas phase oxidation, several process control parameters were discussed. Reactor design has the most crucial role in determining its commercialization. Compared to the above two systems, aque‐ous homogenous oxidation is an efficient route to get a higher yield of methanol. However, the cor‐rosive medium in this method and its serious environmental pollution hinder its widespread use. The key challenge to the industrial application is to find a green medium and highly efficient cata‐lysts.
基金supported by the National Nature Science Foundation of China(21276117,21376111,21406092)~~
文摘A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.
基金financially supported by the National Nature Science Foundation of China (Nos. 21776116, 21576122, 21722604)Postdoctoral Foundation of China (No. 2017M621646)+1 种基金Postdoctoral Foundation of Jiangsu Province (No. 2018K083C)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘With the aim of deep desulfurization, silica-supported polyoxometalate-based ionic liquids were successfully prepared by a one-pot hydrothermal process and employed in heterogeneous oxidative desulfurization of various sulfur compounds. The compositions and structures of the hybrid samples were characterized by various methods such as FT-IR, XPS, Raman,UV–Vis, wide-angle XRD and N2adsorption–desorption. The experimental results indicated that the hybrid materials presented a high dispersion of tungsten species and excellent catalytic activity for the removal of 4,6-dimethyldibenzothiophene without any organic solvent as extractant, and the sulfur removal could reach 100.0% under mild conditions.The catalytic performance on various substrates was also investigated in detail. After cycling seven cycles, the sulfur removal of the heterogeneous system still reached 93.0%. The GC-MS analysis results demonstrated that the sulfur compound was first adsorbed by the catalyst and subsequently oxidized to its corresponding sulfone.
基金the Yazd University Research Council for partial support of this work
文摘In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.
基金supported by l'agence de l'environnement et de la maitrise de l'nergie (ADEME) (research contract 0372C0028)the French Ministry of Research ACI DEBIOCIDE-ECD010
文摘Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 ℃, 20 MPa, and reaction time 180 min. The WAO (lst step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ±4)% TOC removal and (78.4 ± 13.2)% conversion of the initial organic-N into NH4+-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12ZZ069)Research Fund for the Doctoral Program of Higher Education,China(No.20130075110006)
文摘In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterogeneous peroxymonosulfate(PMS)activation.The performance of CO_3O_4 / mGO/PMS system was investigated using acid orange 7(AO7).Results showed that Co_3O_4/mGO-3 had the best degradation efficiency of AO7 and the removal rate was above 90%in about 6 min.The phenomenon indicated the catalytic activity of Co_3O_4/mGO composites was related to the oxidation degree of graphite oxide(GO).In addition,experiments showed the content of Co_3O_4 had an effect on the catalytic activity.The composites were characterized with X-ray powder diffraction(XRD),FTIR,Raman,X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).According to the charactrization and synergistic catalytic mechanism,the generation of Co—OH complexes found to be the initial step to activate PMS in the heterogeneous system of Co_3O_4/mGO hybrid.
基金financially supported by the National Natural Science Foundation of China(Nos.21625102,21971017,and 21906007)the National Key Research and Development Program of China(No.2020YFB1506300)the Beijing Institute of Technology Research Fund Program.
文摘Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.
基金supported by the National Natural Science Foundation of China (20407002)National Basic Research Program of China (2002CB410802)special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control
文摘Heterogeneous reactions of SO2 on ZnO particle surfaces were studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The influences of relative humidity (RH) and UV radiation (2= 365 nm) were investigated. In the absence of UV radiation, sulfite was the prominent product on the particle surfaces, and a negative relationship between RH and sulfite production was observed. In the presence of UV radiation, infrared (IR) absorption of sulfite and sulfate was evident in the spectra. With increasing RH or UV intensity, sulfite was gradually transformed into sulfate. UV intensity and RH exhibited a synergistic effect on the heterogeneous oxidation of SO2 on ZnO. On dry particles and with no UV radiation, the reaction order of SO2 on ZnO particles was 1.6. The initial uptake coefficient for the formation of sulfite, using the Brunauer-Emmett-Teller (BET) area as the reactive surface area of SO2, was 4.87 × 10^-6. At 40% RH and with UV radiation, the reaction order was 0.91, and the initial uptake coefficient was 2.29 ×10^-5.
基金supported by the National Natural Science Foundation of China(21533002,21373089,21603075)the National Key Research and Development Program of China(2016YFA0202804)
文摘The liquid-phase oxidation of ethylamine with hydrogen peroxide was studied over tungsten-doped zeolites to develop a clean and simple route for producing acetaldehyde oxime. The investigations were firstly performed over W/MOR, where the coordinated state as well as the acidity of the W species were characterized. The reaction parameters, including H_2O_2 amount, solvent,temperature, tungsten content as well as catalyst amount, governed the activity and oxime selectivity. Under optimized reaction conditions, W/MOR showed an ethylamine conversion and corresponding oxime selectivity of 18.3% and 88.9%. W/MOR showed a superior performance in comparison to other tungsten-containing zeolites of W/Beta, W/MWW and W/Y. Although W/MOR exhibited lower amine conversion than titanosilicates of TS-1 and Ti-MWW, it gave higher selectivity to the main product of oxime. Moreover, W/MOR proved to be a robust catalyst, exhibiting a stable catalytic performance after being reused at least for 5 times.