A series of spinel fe rrites magnetic nanopa rticles NiFe2 O4 we re synthesized as the heterogeneous Fentonlike catalyst by hydrothermal method and then NiFe2 O4@SiO2 catalysts were obtained by the modification of NiF...A series of spinel fe rrites magnetic nanopa rticles NiFe2 O4 we re synthesized as the heterogeneous Fentonlike catalyst by hydrothermal method and then NiFe2 O4@SiO2 catalysts were obtained by the modification of NiFe2 O4 via micro emulsion method.XRD,VSM,FTIR,SEM,TEM,BET and XPS were carried to analyze the difference between the above two catalysts.NiFe2 O4@SiO2 catalyst exhibited the higher catalytic activity than NiFe2 O4 for the degradation of Rhodamine B owe to the outer Si02 layers surface,the more important is both of them showed the better catalytic performance when at neutral pH environment.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was i...Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was initially adsorbed on the porous ATPs, and then the enriched MB was removed by the H2O2-assisted Fenton-like oxidation with the iron-containing ATP catalyst. Under optimal conditions, the ATP powder exhibits the maximum removal efficiency of 100% with negligible iron leaching(1.5 mg L^(-1)) and no sludge formation. Furthermore,polysulfone/ATP(PSF/ATP) pellets were fabricated through a water-induced phase separation process to construct a fixed-bed reactor(FBR) for continuous contaminant removal. For the first cycle, the maximum adsorption capacity was 15.5 L with an outlet MB concentration of1.973 mg L-1(< 2 mg L^(-1), GB4287-2012) using the PSF/ATP pellets containing 50.0 g of ATP powders, and the maximum Fenton-like oxidation capacity was 35.5 L with the outlet concentration of 0.831 mg L^(-1). After five cycles, the total treated volume of the MB solution was ca. 255 L, and the efficiency remained above 99%. After 10 h of continuous treatment towards practical resin industrial wastewater, the chemical oxygen demand(COD) removal efficiency was still measured at 83.05%, costing 0.398 $ m^(-3). These results demonstrate the practical applicability of iron-containing low-grade ATP clay for textile water treatment.展开更多
Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and re...Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.展开更多
Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and...Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and health impacts of aerosols.However,our knowledge on this heterogeneous chemistry remains inadequate.In this study,the heterogeneous oxidation ofα-pinene ozonolysis SOA by hydroxyl(OH)radicals was investigated under both low and high relative humidity(RH)conditions,with an emphasis on the evolution of molecular composition of SOA and its RH dependence.It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60%at 25%RH and 95%at 90%RH.The heterogeneous oxidation strongly changes the molecular composition of SOA.The dimer-to-monomer signal ratios increase dramatically with rising OH exposure,in particular under high RH conditions,suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers.In addition,the typical SOA tracer compounds such as pinic acid,pinonic acid,hydroxy pinonic acid and dimer esters(e.g.,C17H26O8 and C19H28O7)have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions,which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods.Our study sheds lights on the heterogeneous oxidation chemistry ofmonoterpene SOA andwould help to understand their evolution and impacts in the atmosphere.展开更多
The elimination of neonicotinoids(NEOs)from water has been a research priority due to their threats to human health and ecosystems.In this study,we established the heterogeneous peroxymonosulfate(PMS)activation system...The elimination of neonicotinoids(NEOs)from water has been a research priority due to their threats to human health and ecosystems.In this study,we established the heterogeneous peroxymonosulfate(PMS)activation system using manganese catalyst(Mn NC)and cobalt catalyst(Co NC)to trigger the nonradical oxidation and synergistic oxidation pathway,respectively to remove NEOs.The results showed that the nonradical oxidation system exhibited superior NEOs degradation capability.The composition of organic pollutants in wastewater significantly impacted subsequent degradation processes.The charge distribution and reaction sites of various NEOs were analyzed using density functional theory(DFT)calculations,and it demonstrated the electron distribution and activity of NEOs were significantly influenced by the type and number of substituents.Nitro group(–NO_(2))and cyanide group(–C≡N)were identified as strong electron-withdrawing groups and prone to be attacked by negatively charged radicals.The transformation of NEOs was analyzed,and result showed that the C and N sites adjacent to the nitro group and cyanide group were more susceptible to oxidation attacks.S and N atoms,which possess strong electronegativity and high electron cloud density,were identified as key active sites in the degradation pathway.The outcomes of this study provide valuable guidance for the oriented regulation of oxidation pathways towards efficient removal of NEOs in water.展开更多
Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stab...Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.展开更多
In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(F...In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(Fe-N/C),which were used to activate peroxymonosulfate(PMS).The relationship between different small molecular carbon sources and the electronic structure was investigated.The characteristics of metal-carrier interaction in the Fe-N/C were clarified.As a result,there were significant differences in the degradation efficiency of catalysts prepared with different small molecular carbon sources,which was related to the types of active sites.Density functional theory(DFT)and experiments results showed that the catalyst rich in C-O-C and FeN_(x)exhibited better catalytic activity,which may be attributed to the higher adsorption energy for PMS.The main active species for catalytic degradation of ofloxacin were identified as sulfate radical(SO_(4)^(·-))and hydroxyl radical(^(·)OH)by electron paramagnetic resonance(EPR)spectra.The introduction of different small molecular carbon sources can significantly affect the distribution and electronic structure of active sites on the catalyst surface,thereby regulating the generation and migration of radicals.展开更多
Precise manipulation of the catalytic spin configuration and delineation of the relationship between spin related properties and oxidation pathways remain significant challenges in Fenton-like processes.Herein,encapsu...Precise manipulation of the catalytic spin configuration and delineation of the relationship between spin related properties and oxidation pathways remain significant challenges in Fenton-like processes.Herein,encapsulated cobalt nanoparticles and cobalt-nitrogen-doped carbon moieties,endowed with confinement effects and variations in shell curvature were constructed via straightforward pyrolysis strategies,inducing alterations in magnetic anisotropy,electronic energy levels and spin polarization.The enhanced spin polarization at cobalt sites leads to a reduction in crystal field splitting energy and an increase in electronic spin density.This phenomenon facilitated electron transfer from cobalt orbitals to pz orbitals of oxygen species within peroxymonosulfate molecules,thereby promoting the formation of high-valent cobalt species.The encapsulation effectively stabilized cobalt nanoparticles,mitigating their dissolution or deactivation during reactions,which in turn enhances stability and durability in continuous flow processes.The high-valent cobalt species within the shell exhibit increased exposure and generate localized high concentrations,thereby intensifying interactions with migrating pollutants and enabling efficient and selective oxidation of emerging compounds with elevated redox potentials.This work underscores the profound impact of confined encapsulation curvature and spin polarization characteristics of metal sites on catalytic oxidation pathways and performance,opening novel avenues for spin engineering in practical environmental catalysis.展开更多
SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can...SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can be used as an effective strategy for surface engineering,allowing for structure modulation or design,property tuning and application exploration.However,there is currently a gap in understanding the relationship between the oxidation behavior of SnS,the structure of its oxidized surface,and the dependence on oxidation temperature.In this study,we systematically investigated the evolution of SnS surfaces under thermal oxidation using electron microscopy.The microstructure evolution(e.g.,surface structures,phases,defects,and interface)of SnS during high-temperature oxidation has been fully characterized and studied based on cross-sectional samples.Various surface heterostructures were constructed,including SnO_(2)/SnS,SnO_(2)/SnS_(2)/SnS,and SnO_(2)/Sn_(2)S_(3)/SnS,offering significant potential for the surface functionalization of SnS-based systems.Accordingly,oxidation mechanisms at different stages were elucidated based on the detailed and clear picture of microstructures.This research not only deepens our understanding of the fundamental science of SnS oxidation but also provides valuable insights for preventing and developing surface oxidation engineering in SnS and other van der Waals chalcogenides/materials.展开更多
A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst...A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.展开更多
A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical pro...A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.展开更多
Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catal...Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catalytic system exhibited a broad substrate scope and excellent regi‐oselectivity, as well as being amenable to gram‐scale synthesis. This MnOx‐N@C catalyst also showed good reusability and was successfully recycled six times without any significant loss of activity.展开更多
The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development ...The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals.展开更多
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catal...Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catalyst(Fe Ox/SBAC) by a simple impregnation method.The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater(CGW). The results indicated that the prepared Fe Ox/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide p H range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1 g/L of catalyst, and the treated effluent concentrations of COD, total phenols,BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated Fe Ox/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, Fe Ox/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by Fe Ox/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.展开更多
MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Further...MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.展开更多
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial impo...The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal;however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(Ⅲ) by solid oxidants such as manganese oxide, and the adsorption of As(Ⅴ)accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(Ⅲ). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(Ⅴ). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants(DWTPs).This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.展开更多
The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used ...The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.展开更多
Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,c...Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.展开更多
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investig...Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.展开更多
基金the financial support from the Fundamental Research Funds for the Central Universities(No. xjj2016045)
文摘A series of spinel fe rrites magnetic nanopa rticles NiFe2 O4 we re synthesized as the heterogeneous Fentonlike catalyst by hydrothermal method and then NiFe2 O4@SiO2 catalysts were obtained by the modification of NiFe2 O4 via micro emulsion method.XRD,VSM,FTIR,SEM,TEM,BET and XPS were carried to analyze the difference between the above two catalysts.NiFe2 O4@SiO2 catalyst exhibited the higher catalytic activity than NiFe2 O4 for the degradation of Rhodamine B owe to the outer Si02 layers surface,the more important is both of them showed the better catalytic performance when at neutral pH environment.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by Gansu Cuihua Technology Co.,Ltd.(H2020292)Science and Technology Planning of Baiyin City,Fundamental Research Funds for the Central Universities (buctrc202208)+2 种基金Engineering Research Center of Non-metallic Minerals of Zhejiang Province and the Beijing Engineering Center for Hierarchical Catalysts. Central Government Guiding Funds for Local Science and Technology Development (2022ZY015)Nanjiang Technology Project(2023AB028)Open Laboratory of State Key Laboratory of Organic and Inorganic Composites (oic-202301006)。
文摘Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue(MB) using refined iron-containing lowgrade attapulgite(ATP) clay, and the removal mechanism was investigated. The MB was initially adsorbed on the porous ATPs, and then the enriched MB was removed by the H2O2-assisted Fenton-like oxidation with the iron-containing ATP catalyst. Under optimal conditions, the ATP powder exhibits the maximum removal efficiency of 100% with negligible iron leaching(1.5 mg L^(-1)) and no sludge formation. Furthermore,polysulfone/ATP(PSF/ATP) pellets were fabricated through a water-induced phase separation process to construct a fixed-bed reactor(FBR) for continuous contaminant removal. For the first cycle, the maximum adsorption capacity was 15.5 L with an outlet MB concentration of1.973 mg L-1(< 2 mg L^(-1), GB4287-2012) using the PSF/ATP pellets containing 50.0 g of ATP powders, and the maximum Fenton-like oxidation capacity was 35.5 L with the outlet concentration of 0.831 mg L^(-1). After five cycles, the total treated volume of the MB solution was ca. 255 L, and the efficiency remained above 99%. After 10 h of continuous treatment towards practical resin industrial wastewater, the chemical oxygen demand(COD) removal efficiency was still measured at 83.05%, costing 0.398 $ m^(-3). These results demonstrate the practical applicability of iron-containing low-grade ATP clay for textile water treatment.
基金supported by National Natural Science Fundation of China(Nos.52170086,22308194,U22A20423)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Taishan Scholars Program of Shandong Province(No.tsqn202211012)Shandong Provincial Excellent Youth(No.ZR2022YQ47)。
文摘Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.
基金supported by the National Natural Science Foundation of China (Nos.22022607 and 42005090)the Shanghai Pujiang Program (No.20PJ1407600)。
文摘Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol(SOA)and plays an important role in controlling the abundance,properties,as well as climate and health impacts of aerosols.However,our knowledge on this heterogeneous chemistry remains inadequate.In this study,the heterogeneous oxidation ofα-pinene ozonolysis SOA by hydroxyl(OH)radicals was investigated under both low and high relative humidity(RH)conditions,with an emphasis on the evolution of molecular composition of SOA and its RH dependence.It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60%at 25%RH and 95%at 90%RH.The heterogeneous oxidation strongly changes the molecular composition of SOA.The dimer-to-monomer signal ratios increase dramatically with rising OH exposure,in particular under high RH conditions,suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers.In addition,the typical SOA tracer compounds such as pinic acid,pinonic acid,hydroxy pinonic acid and dimer esters(e.g.,C17H26O8 and C19H28O7)have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions,which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods.Our study sheds lights on the heterogeneous oxidation chemistry ofmonoterpene SOA andwould help to understand their evolution and impacts in the atmosphere.
基金funded by National Natural Science Foundation of China(No.42177382)。
文摘The elimination of neonicotinoids(NEOs)from water has been a research priority due to their threats to human health and ecosystems.In this study,we established the heterogeneous peroxymonosulfate(PMS)activation system using manganese catalyst(Mn NC)and cobalt catalyst(Co NC)to trigger the nonradical oxidation and synergistic oxidation pathway,respectively to remove NEOs.The results showed that the nonradical oxidation system exhibited superior NEOs degradation capability.The composition of organic pollutants in wastewater significantly impacted subsequent degradation processes.The charge distribution and reaction sites of various NEOs were analyzed using density functional theory(DFT)calculations,and it demonstrated the electron distribution and activity of NEOs were significantly influenced by the type and number of substituents.Nitro group(–NO_(2))and cyanide group(–C≡N)were identified as strong electron-withdrawing groups and prone to be attacked by negatively charged radicals.The transformation of NEOs was analyzed,and result showed that the C and N sites adjacent to the nitro group and cyanide group were more susceptible to oxidation attacks.S and N atoms,which possess strong electronegativity and high electron cloud density,were identified as key active sites in the degradation pathway.The outcomes of this study provide valuable guidance for the oriented regulation of oxidation pathways towards efficient removal of NEOs in water.
基金supported by National Natural Science Foundation of China(No.52170086)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Natural science Foundation of Shaanxi province(No.2024JC-YBQN-0252)Special Scientific Research Project of Hanzhong City-Shaanxi University of Technology Co-construction State Key Laboratory(No.SXJ2106)。
文摘Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.
基金supported by National Natural Science Foundation of China(Nos.52170086,52300056)Natural Science Foundation of Shandong Province(Nos.ZR2021ME013,ZR202211280298)。
文摘In this study,different types of small molecular carbon sources such as melamine,dicyandiamine,pyrocatechol,and o-phenylenediamine were used to regulate the surface structures of iron/nitrogen/carbonbased composites(Fe-N/C),which were used to activate peroxymonosulfate(PMS).The relationship between different small molecular carbon sources and the electronic structure was investigated.The characteristics of metal-carrier interaction in the Fe-N/C were clarified.As a result,there were significant differences in the degradation efficiency of catalysts prepared with different small molecular carbon sources,which was related to the types of active sites.Density functional theory(DFT)and experiments results showed that the catalyst rich in C-O-C and FeN_(x)exhibited better catalytic activity,which may be attributed to the higher adsorption energy for PMS.The main active species for catalytic degradation of ofloxacin were identified as sulfate radical(SO_(4)^(·-))and hydroxyl radical(^(·)OH)by electron paramagnetic resonance(EPR)spectra.The introduction of different small molecular carbon sources can significantly affect the distribution and electronic structure of active sites on the catalyst surface,thereby regulating the generation and migration of radicals.
文摘Precise manipulation of the catalytic spin configuration and delineation of the relationship between spin related properties and oxidation pathways remain significant challenges in Fenton-like processes.Herein,encapsulated cobalt nanoparticles and cobalt-nitrogen-doped carbon moieties,endowed with confinement effects and variations in shell curvature were constructed via straightforward pyrolysis strategies,inducing alterations in magnetic anisotropy,electronic energy levels and spin polarization.The enhanced spin polarization at cobalt sites leads to a reduction in crystal field splitting energy and an increase in electronic spin density.This phenomenon facilitated electron transfer from cobalt orbitals to pz orbitals of oxygen species within peroxymonosulfate molecules,thereby promoting the formation of high-valent cobalt species.The encapsulation effectively stabilized cobalt nanoparticles,mitigating their dissolution or deactivation during reactions,which in turn enhances stability and durability in continuous flow processes.The high-valent cobalt species within the shell exhibit increased exposure and generate localized high concentrations,thereby intensifying interactions with migrating pollutants and enabling efficient and selective oxidation of emerging compounds with elevated redox potentials.This work underscores the profound impact of confined encapsulation curvature and spin polarization characteristics of metal sites on catalytic oxidation pathways and performance,opening novel avenues for spin engineering in practical environmental catalysis.
基金financially supported by the National Natural Science Foundation of China(Nos.11904039,52125103,52071041,U21A2054 and 12104071)。
文摘SnS,a well-known van der Waals chalcogenide,is susceptible to oxidation in high-temperature or highhumidity environments,significantly impacting its functional performance and device stability.Conversely,oxidation can be used as an effective strategy for surface engineering,allowing for structure modulation or design,property tuning and application exploration.However,there is currently a gap in understanding the relationship between the oxidation behavior of SnS,the structure of its oxidized surface,and the dependence on oxidation temperature.In this study,we systematically investigated the evolution of SnS surfaces under thermal oxidation using electron microscopy.The microstructure evolution(e.g.,surface structures,phases,defects,and interface)of SnS during high-temperature oxidation has been fully characterized and studied based on cross-sectional samples.Various surface heterostructures were constructed,including SnO_(2)/SnS,SnO_(2)/SnS_(2)/SnS,and SnO_(2)/Sn_(2)S_(3)/SnS,offering significant potential for the surface functionalization of SnS-based systems.Accordingly,oxidation mechanisms at different stages were elucidated based on the detailed and clear picture of microstructures.This research not only deepens our understanding of the fundamental science of SnS oxidation but also provides valuable insights for preventing and developing surface oxidation engineering in SnS and other van der Waals chalcogenides/materials.
基金supported by the National Natural Science Foundation of China(51268001)~~
文摘A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.
基金financially supported by the Shenzhen Science and Technology Innovation Program(Grant No.JCYJ20220530150011024)。
文摘A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.
基金supported by the National Basic research Program of China (973 Program,2009CB623505)the National Natural Science Foundation of China (21273225)~~
文摘Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catalytic system exhibited a broad substrate scope and excellent regi‐oselectivity, as well as being amenable to gram‐scale synthesis. This MnOx‐N@C catalyst also showed good reusability and was successfully recycled six times without any significant loss of activity.
基金financially supported by the National Natural Science Foundation of China(22205205)the Science Foundation of Zhejiang Sci-Tech University(ZSTU)under Grant No.21062337-Y。
文摘The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals.
基金supported by the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No.2015DX02)
文摘Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon(SBAC) with Zn Cl2 as activation agent, which was used as a support for ferric oxides to form a catalyst(Fe Ox/SBAC) by a simple impregnation method.The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater(CGW). The results indicated that the prepared Fe Ox/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide p H range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1 g/L of catalyst, and the treated effluent concentrations of COD, total phenols,BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated Fe Ox/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, Fe Ox/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by Fe Ox/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.
文摘MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.
基金supported by the National Natural Science Foundation of China (No. 51925807)。
文摘The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite(As(Ⅲ)) to negatively-charged arsenate(As(Ⅴ)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal;however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(Ⅲ) by solid oxidants such as manganese oxide, and the adsorption of As(Ⅴ)accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(Ⅲ). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(Ⅴ). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants(DWTPs).This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.
基金supported by the National Natural Science Foundation of China(Nos.21107125,21577160,51290282,51221892)the National Basic Research Program(973s)of China(No.2011CB933704)the Hjalmar Lundbom Research Center at Lulea niversity of Technology
文摘The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.
基金financially supported by the National Natural Science Foundation of China(No.U1810205)the National Basic Research Program of China(No.2014CB 643401)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes。
文摘Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
基金Project(CZQ13002)supported by the Special Fund for Basic Scientific Research of Central Universities,China
文摘Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.