Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis rout...Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis routes are dispersed across diverse sources, KGs provide a semantic framework that supports data integration under the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This review aims to survey recent developments in catalysis KGs, describe the main techniques for graph construction, and highlight how artificial intelligence, particularly large language models (LLMs), enhances graph generation and query. We conducted a systematic analysis of the literature, focusing on ontology-guided text mining pipelines, graph population methods, and maintenance strategies. Our review identifies key trends: ontology-based approaches enable the automated extraction of domain knowledge, LLM-driven retrieval-augmented generation supports natural-language queries, and scalable graph architectures range from a few thousand to over a million triples. We discuss state-of-the-art applications, such as catalyst recommendation systems and reaction mechanism discovery tools, and examine the major challenges, including data heterogeneity, ontology alignment, and long-term graph curation. We conclude that KGs, when combined with AI methods, hold significant promise for accelerating catalyst discovery and knowledge management, but progress depends on establishing community standards for ontology development and maintenance. This review provides a roadmap for researchers seeking to leverage KGs to advance heterogeneous catalysis research.展开更多
Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core st...Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core structure encased within an ultrathin graphitic nanoshell(G),and has been widely exploited as a metal-free catalyst or a support for metal catalyst.Its unique curved zero-dimensional structure/surface and tunable defective surface characteristics endow it with outstanding performance in different heterogeneous catalytic systems.The present review summarized the construction of the diverse types of ND@G and a wide-ranging valorization of structure-activity relation with its catalytic mechanism in various reactions.The recent advancements in the impact of active sites’architecture and the interaction between metal and support(preventing the as-formed metal species migration and agglomeration based on ND@G)on the catalytic performance of supported metal catalysts are particularly highlighted.The current challenges and outlooks/opportunities confronted by ND@G materials in catalysis are prospected by virtue of its fundamental physicochemical characterizations and potential catalytic estimation.This in-depth analysis seeks to pave the way for effective utilizing the ND@G in catalytic processes.Based on our knowledge,we also identify the challenges along with this area and offer some perspectives on how to overcome them.展开更多
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It...This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and ch...In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.展开更多
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ...Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.展开更多
Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated w...Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic...Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.展开更多
Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’...Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’s population faces severe water scarcity,and nearly 2.2 billion people lack access to safe drinking water[2].展开更多
The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their ph...The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their physicochemical characteristics with performance,specificity,and robustness at nanoscales.Understanding tangible catalyst attributes and corresponding catalytic processes necessitates the identification and rationalization of catalyst behavior modifications during reaction conditions.Recent innovations in in-situ TEM techniques have opened new avenues to observe the progress of heterogeneous catalysis with unparalleled spatial precision,superior energy resolution,and precise temporal resolution in controlled or realistic catalytic environments.Herein,we have reviewed the established and evolving techniques for monitoring catalysts through the utilization of in-situ TEM.By combining in-situ TEM with cutting-edge spectroscopic methodologies like atomic electron tomography(AET),4D-STEM,cryogenic electron microscopy,and monochromated electron energy loss spectroscopy(EELS),a comprehensive approach to catalyst observation is achieved.Likewise,this advancement is expected to highlight and expand the crucial role of in-situ TEM in elucidating catalyst surface structures,active sites,and reaction pathways across key catalytic reactions,shaping the field of research in heterogeneous catalysis.Finally,the potential applications,advantages,and challenges of using in-situ TEM are emphasized and addressed in detail.展开更多
After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to thei...After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to their distinct physicochemical and electronic properties.This review highlights recent progress in the application of 2D materials for selected heterogeneous thermo‐catalytic reactions,with an emphasis on their role as active catalysts or catalyst supports.The catalytic behavior of 2D materials,either as a catalyst or support,in various heterogeneous catalytic reactions,such as Knoevenagel condensation,Suzuki coupling,oxidative dehydrogenation,hydrogenation of nitroarenes,and oxidative desulfurization,is discussed.Particular attention is given to catalyst design strategies involving 2D materials functionalized with metal‐free active sites,as well as hybrid systems incorporating noble and non‐noble metals,although our primary focus is on metal‐free and structurally tunable 2D catalytic platforms.We conclude our discussion with a perspective on present challenges and future recommendations in this fast‐evolving field based on recent state‐of‐the‐art developments.In addition,we provide a critical perspective on current challenges and suggest future directions for the development of cost‐effective,selective,and durable 2D‐based catalysts.展开更多
Heterogeneous catalysis is fundamental to chemical processes,with gas-solid catalysis extensively employed in chemical production,energy conversion,and environmental protection.Attaining high efficiency in these proce...Heterogeneous catalysis is fundamental to chemical processes,with gas-solid catalysis extensively employed in chemical production,energy conversion,and environmental protection.Attaining high efficiency in these processes necessitates catalysts exhibiting exceptional activity,selectivity,and stability,frequently accomplished using nanostructured metal catalysts.The continuous growth of active sites in heterogeneous metal catalysts presents a considerable obstacle for the precise identification of the genuine active sites.The emergence of in situ and operando characterization techniques has clarified the knowledge of dynamic alterations in active sites,offering substantial scientific information to underpin the rational design of catalysts.This review summarizes recent progress in the development of diverse situ/operando approaches for identifying active regions in catalytic conversion over heterogeneous catalysts.We comprehensively outline the applicability of diverse optical and X-ray spectroscopic techniques,including transmission electron microscopy,Raman spectroscopy,ultraviolet-visible spectroscopy,Fourier transform infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and X-ray absorption spectroscopy,in identifying active sites and elucidating reaction processes in heterogeneous catalysis.The discussion encompasses issues and future views on the identification of active sites evolution during the reaction process,as well as the advancement of in situ and operando characterization approaches.展开更多
Chiral metal-organic frameworks (CMOFs), a class of highly crystalline and porous materials with tailorable chiral characteristics, have currently become an interdisciplinary between chirality chemistry, coordination ...Chiral metal-organic frameworks (CMOFs), a class of highly crystalline and porous materials with tailorable chiral characteristics, have currently become an interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medi-cine, pharmacology, biology, crystal engineering, environmental science, etc. Their special structural features such as porosity, modularity, and chirality have endowed them with a variety of unique effects in promoting enantioselective processes, particularly asymmetric catalysis. Here, we provide a brief review of the state of CMOF field from the privileged ligand design to the heterogeneous enantioselective catalysis. We hope that this review will provide researchers a better understanding of CMOF chemistry and facilitate the future research endeavors for rationally designing privileged chiral framework materials for challenging catalytic applications.展开更多
Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied ...Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic vip molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
Main observation and conclusion Aqueous heterogeneous catalysis is a green,sustainable catalytic process that attracts increasing attention,but it often suffers from poor mass transfer,substrate adsorption and catalys...Main observation and conclusion Aqueous heterogeneous catalysis is a green,sustainable catalytic process that attracts increasing attention,but it often suffers from poor mass transfer,substrate adsorption and catalyst dispersion.Herein,we synthesized a type of amphiphilic core-shell catalysts with a hydrophilic polydopamine(PDA)shell and a hydrophobic dendritic organosilica nanoparticle(DON)core for heterogeneous catalysis in water.展开更多
Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology...Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology and composition requires full understanding especially under realistic reaction conditions. To this end, conventional scanning tunneling microscopy(STM) has been integrated with high pressure cell and electrochemical cell, forming high pressure(HP) STM and electrochemical(EC) STM for the in-situ/operando characterization at solid-gas and solid-liquid interfaces with atomic resolution, respectively. In this review, we attempt to give a brief introduction to the development and working principle of these two techniques and subsequently summarize several representative progresses in recent days. The dynamic changes in active sites, surface reconstruction, absorbates alteration and products formation are directly characterized in a combination with other surface sensitive technologies. The correlation between surface structures and catalytic performance as well as the underlying mechanism can thus be unraveled, which provides insights into the rational design and optimization of catalysts.展开更多
Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumula...Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumulate a large amount of oil.However,microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts.For this reason,some authors suggest the application of heterogeneous catalysis.A particular interest in the use of immobilized enzymes has developed.Other solid substances can also be used as heterogeneous catalysts are usually metal oxides,carbonates or zeolites.The use of these catalysts results in simpler biodiesel synthesis,especially purification processes,a cleaner end product and a less polluted environment.The molar ratio of alcohol to oil is lower during enzymatic transesterification,and more than 90%ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1.The alcohols do not have a negative effect on the effectiveness of chemical catalysts,so it is possible to use alcohols in molar ratio from 4:1 to 12:1.The optimal temperature of enzymatic process is 30℃–50℃.An ester yield of more than 95%was obtained in 12–48 h.Using chemical catalysts,greater than a 95%yield of esters was obtained at higher temperatures in a shorter time.Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.展开更多
基金support from the Full Bridge Fellowship for enabling the research stay at Virginia Tech.H.Xin acknowledge the financial support from the US Department of Energy,Office of Basic Energy Sciences under contract no.DE-SC0023323from the National Science Foundation through the grant 2245402 from CBET Catalysis and CDS&E programs.
文摘Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis routes are dispersed across diverse sources, KGs provide a semantic framework that supports data integration under the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This review aims to survey recent developments in catalysis KGs, describe the main techniques for graph construction, and highlight how artificial intelligence, particularly large language models (LLMs), enhances graph generation and query. We conducted a systematic analysis of the literature, focusing on ontology-guided text mining pipelines, graph population methods, and maintenance strategies. Our review identifies key trends: ontology-based approaches enable the automated extraction of domain knowledge, LLM-driven retrieval-augmented generation supports natural-language queries, and scalable graph architectures range from a few thousand to over a million triples. We discuss state-of-the-art applications, such as catalyst recommendation systems and reaction mechanism discovery tools, and examine the major challenges, including data heterogeneity, ontology alignment, and long-term graph curation. We conclude that KGs, when combined with AI methods, hold significant promise for accelerating catalyst discovery and knowledge management, but progress depends on establishing community standards for ontology development and maintenance. This review provides a roadmap for researchers seeking to leverage KGs to advance heterogeneous catalysis research.
基金financial support from the National Natural Science Foundation of China(22202217)the National Natural Science Foundation of Gansu(24JRRA046)+1 种基金the Department of Science&Technology of Shandong Province for their assistance(2023CXGC010607)the Joint Fund of Shandong Energy Institute and Enterprise(SEI U202308)。
文摘Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core structure encased within an ultrathin graphitic nanoshell(G),and has been widely exploited as a metal-free catalyst or a support for metal catalyst.Its unique curved zero-dimensional structure/surface and tunable defective surface characteristics endow it with outstanding performance in different heterogeneous catalytic systems.The present review summarized the construction of the diverse types of ND@G and a wide-ranging valorization of structure-activity relation with its catalytic mechanism in various reactions.The recent advancements in the impact of active sites’architecture and the interaction between metal and support(preventing the as-formed metal species migration and agglomeration based on ND@G)on the catalytic performance of supported metal catalysts are particularly highlighted.The current challenges and outlooks/opportunities confronted by ND@G materials in catalysis are prospected by virtue of its fundamental physicochemical characterizations and potential catalytic estimation.This in-depth analysis seeks to pave the way for effective utilizing the ND@G in catalytic processes.Based on our knowledge,we also identify the challenges along with this area and offer some perspectives on how to overcome them.
文摘This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金financial support from the National Natural Science Foundation of China(22008032)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)+1 种基金the Shandong Provincial Natural Science Foundation(ZR2020ZD08)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)
文摘In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.
文摘Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.
基金supported by the National Natural Science Foundation of China (No.21573063)the Hunan Provincial Natural Science Foundation of Youth Fund (No.2020JJ3002)+1 种基金Open Fund from Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion (No.2018TP1037201902)the Training Program of Hunan University of Youth Fund。
文摘Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the Key R&D plan(East-West Cooperation) of Ningxiathe First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.
基金the National Natural Science Foundation of China(52100156)the National Key R&D Program(2022YFE0125100)+4 种基金Climbing Program of Tianjin University(2023XPD-0006)for the financial supportsupported by the Technology Innovation Program(00432915)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF2021R1A6A1A10045235)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2C2011734)supported by OJEong Resilience Institute,Korea University.
文摘Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’s population faces severe water scarcity,and nearly 2.2 billion people lack access to safe drinking water[2].
基金National Natural Science Foundation of China(52161145409,21976116)SAFEA of China(“Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)Alexander-von-Humboldt Foundation of Germany(Group-Linkage Program)。
文摘The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their physicochemical characteristics with performance,specificity,and robustness at nanoscales.Understanding tangible catalyst attributes and corresponding catalytic processes necessitates the identification and rationalization of catalyst behavior modifications during reaction conditions.Recent innovations in in-situ TEM techniques have opened new avenues to observe the progress of heterogeneous catalysis with unparalleled spatial precision,superior energy resolution,and precise temporal resolution in controlled or realistic catalytic environments.Herein,we have reviewed the established and evolving techniques for monitoring catalysts through the utilization of in-situ TEM.By combining in-situ TEM with cutting-edge spectroscopic methodologies like atomic electron tomography(AET),4D-STEM,cryogenic electron microscopy,and monochromated electron energy loss spectroscopy(EELS),a comprehensive approach to catalyst observation is achieved.Likewise,this advancement is expected to highlight and expand the crucial role of in-situ TEM in elucidating catalyst surface structures,active sites,and reaction pathways across key catalytic reactions,shaping the field of research in heterogeneous catalysis.Finally,the potential applications,advantages,and challenges of using in-situ TEM are emphasized and addressed in detail.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U24B20201)the National Natural Science Foundation of China(22372007 and 21972010).
文摘After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to their distinct physicochemical and electronic properties.This review highlights recent progress in the application of 2D materials for selected heterogeneous thermo‐catalytic reactions,with an emphasis on their role as active catalysts or catalyst supports.The catalytic behavior of 2D materials,either as a catalyst or support,in various heterogeneous catalytic reactions,such as Knoevenagel condensation,Suzuki coupling,oxidative dehydrogenation,hydrogenation of nitroarenes,and oxidative desulfurization,is discussed.Particular attention is given to catalyst design strategies involving 2D materials functionalized with metal‐free active sites,as well as hybrid systems incorporating noble and non‐noble metals,although our primary focus is on metal‐free and structurally tunable 2D catalytic platforms.We conclude our discussion with a perspective on present challenges and future recommendations in this fast‐evolving field based on recent state‐of‐the‐art developments.In addition,we provide a critical perspective on current challenges and suggest future directions for the development of cost‐effective,selective,and durable 2D‐based catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.22276145,22406146,and 22476157)the China Postdoctoral Science Foundation(Grant No.2023M732783).
文摘Heterogeneous catalysis is fundamental to chemical processes,with gas-solid catalysis extensively employed in chemical production,energy conversion,and environmental protection.Attaining high efficiency in these processes necessitates catalysts exhibiting exceptional activity,selectivity,and stability,frequently accomplished using nanostructured metal catalysts.The continuous growth of active sites in heterogeneous metal catalysts presents a considerable obstacle for the precise identification of the genuine active sites.The emergence of in situ and operando characterization techniques has clarified the knowledge of dynamic alterations in active sites,offering substantial scientific information to underpin the rational design of catalysts.This review summarizes recent progress in the development of diverse situ/operando approaches for identifying active regions in catalytic conversion over heterogeneous catalysts.We comprehensively outline the applicability of diverse optical and X-ray spectroscopic techniques,including transmission electron microscopy,Raman spectroscopy,ultraviolet-visible spectroscopy,Fourier transform infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and X-ray absorption spectroscopy,in identifying active sites and elucidating reaction processes in heterogeneous catalysis.The discussion encompasses issues and future views on the identification of active sites evolution during the reaction process,as well as the advancement of in situ and operando characterization approaches.
基金the National Key R&D Program of China(2023YFA1507601)the National Natural Science Foundation of China(22522108,52373213,22301176).
文摘Chiral metal-organic frameworks (CMOFs), a class of highly crystalline and porous materials with tailorable chiral characteristics, have currently become an interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medi-cine, pharmacology, biology, crystal engineering, environmental science, etc. Their special structural features such as porosity, modularity, and chirality have endowed them with a variety of unique effects in promoting enantioselective processes, particularly asymmetric catalysis. Here, we provide a brief review of the state of CMOF field from the privileged ligand design to the heterogeneous enantioselective catalysis. We hope that this review will provide researchers a better understanding of CMOF chemistry and facilitate the future research endeavors for rationally designing privileged chiral framework materials for challenging catalytic applications.
基金supported by the National Natural Science Foundation of China(22008032,12105048,and 22078104)Guangdong Basic and Applied Basic Research Foundation(2019A1515110706 and 2020A1515110817)+5 种基金the Science and Technology Key Project of Guangdong Province,China(2020B010188002)the Special Innovation Projects of Universities in Guangdong Province(2018KTSCX240)the Innovation Team of Universities in Guangdong Province(2020KCXTD011)the Engineering Research Center of Universities in Guangdong Province(2019GCZX002)Guangdong Key Laboratory for Hydrogen Energy Technologies(2018B030322005)Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)。
文摘Hierarchically porous metal-organic frameworks(H-MOFs)with micro-,meso-and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests,and they have been studied in diverse applications,especially in heterogeneous catalysis.The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic vip molecules to exploit more possibilities with enhanced catalytic performance.In this review,we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis,which includes oxidation reaction,hydrogenation reaction,and condensation reaction.Emphasis is placed on the multiple functions of hierarchical structures,and the catalytic activity,selectivity,stability,recyclability,etc.of the industrial utility of H-MOFs.Finally,the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21901058,21908040 and 22078081)the Science and Technology Research Project of Hebei Higher Education(ZD2019045)+2 种基金the Natural Science Foundation of Hebei province(B2017202056 and B2019202216)the Natural Science Foundation of Tianjin City(20JCYBJC00530)the Foundation of Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization(Tianjin University of Science and Technology),People's Republic of China(BCERE202001).
文摘Main observation and conclusion Aqueous heterogeneous catalysis is a green,sustainable catalytic process that attracts increasing attention,but it often suffers from poor mass transfer,substrate adsorption and catalyst dispersion.Herein,we synthesized a type of amphiphilic core-shell catalysts with a hydrophilic polydopamine(PDA)shell and a hydrophobic dendritic organosilica nanoparticle(DON)core for heterogeneous catalysis in water.
基金financially supported by the National Natural Science Foundation of China (22002183, 11874380)the Photon Science Center for Carbon Neutrality of Chinese Academy of SciencesCAS Key Laboratory of Low-carbon Conversion Science and Engineering,Chinese Academy of Sciences。
文摘Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology and composition requires full understanding especially under realistic reaction conditions. To this end, conventional scanning tunneling microscopy(STM) has been integrated with high pressure cell and electrochemical cell, forming high pressure(HP) STM and electrochemical(EC) STM for the in-situ/operando characterization at solid-gas and solid-liquid interfaces with atomic resolution, respectively. In this review, we attempt to give a brief introduction to the development and working principle of these two techniques and subsequently summarize several representative progresses in recent days. The dynamic changes in active sites, surface reconstruction, absorbates alteration and products formation are directly characterized in a combination with other surface sensitive technologies. The correlation between surface structures and catalytic performance as well as the underlying mechanism can thus be unraveled, which provides insights into the rational design and optimization of catalysts.
文摘Recently,there is a growing interest in the use of microalga in various fields.Microalgae have properties such as rapid reproduction and high biomass accumulation,and under certain conditions,some are able to accumulate a large amount of oil.However,microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts.For this reason,some authors suggest the application of heterogeneous catalysis.A particular interest in the use of immobilized enzymes has developed.Other solid substances can also be used as heterogeneous catalysts are usually metal oxides,carbonates or zeolites.The use of these catalysts results in simpler biodiesel synthesis,especially purification processes,a cleaner end product and a less polluted environment.The molar ratio of alcohol to oil is lower during enzymatic transesterification,and more than 90%ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1.The alcohols do not have a negative effect on the effectiveness of chemical catalysts,so it is possible to use alcohols in molar ratio from 4:1 to 12:1.The optimal temperature of enzymatic process is 30℃–50℃.An ester yield of more than 95%was obtained in 12–48 h.Using chemical catalysts,greater than a 95%yield of esters was obtained at higher temperatures in a shorter time.Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.