Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis rout...Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis routes are dispersed across diverse sources, KGs provide a semantic framework that supports data integration under the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This review aims to survey recent developments in catalysis KGs, describe the main techniques for graph construction, and highlight how artificial intelligence, particularly large language models (LLMs), enhances graph generation and query. We conducted a systematic analysis of the literature, focusing on ontology-guided text mining pipelines, graph population methods, and maintenance strategies. Our review identifies key trends: ontology-based approaches enable the automated extraction of domain knowledge, LLM-driven retrieval-augmented generation supports natural-language queries, and scalable graph architectures range from a few thousand to over a million triples. We discuss state-of-the-art applications, such as catalyst recommendation systems and reaction mechanism discovery tools, and examine the major challenges, including data heterogeneity, ontology alignment, and long-term graph curation. We conclude that KGs, when combined with AI methods, hold significant promise for accelerating catalyst discovery and knowledge management, but progress depends on establishing community standards for ontology development and maintenance. This review provides a roadmap for researchers seeking to leverage KGs to advance heterogeneous catalysis research.展开更多
Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core st...Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core structure encased within an ultrathin graphitic nanoshell(G),and has been widely exploited as a metal-free catalyst or a support for metal catalyst.Its unique curved zero-dimensional structure/surface and tunable defective surface characteristics endow it with outstanding performance in different heterogeneous catalytic systems.The present review summarized the construction of the diverse types of ND@G and a wide-ranging valorization of structure-activity relation with its catalytic mechanism in various reactions.The recent advancements in the impact of active sites’architecture and the interaction between metal and support(preventing the as-formed metal species migration and agglomeration based on ND@G)on the catalytic performance of supported metal catalysts are particularly highlighted.The current challenges and outlooks/opportunities confronted by ND@G materials in catalysis are prospected by virtue of its fundamental physicochemical characterizations and potential catalytic estimation.This in-depth analysis seeks to pave the way for effective utilizing the ND@G in catalytic processes.Based on our knowledge,we also identify the challenges along with this area and offer some perspectives on how to overcome them.展开更多
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It...This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and ch...In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.展开更多
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ...Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.展开更多
Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated w...Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic...Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.展开更多
Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’...Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’s population faces severe water scarcity,and nearly 2.2 billion people lack access to safe drinking water[2].展开更多
The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their ph...The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their physicochemical characteristics with performance,specificity,and robustness at nanoscales.Understanding tangible catalyst attributes and corresponding catalytic processes necessitates the identification and rationalization of catalyst behavior modifications during reaction conditions.Recent innovations in in-situ TEM techniques have opened new avenues to observe the progress of heterogeneous catalysis with unparalleled spatial precision,superior energy resolution,and precise temporal resolution in controlled or realistic catalytic environments.Herein,we have reviewed the established and evolving techniques for monitoring catalysts through the utilization of in-situ TEM.By combining in-situ TEM with cutting-edge spectroscopic methodologies like atomic electron tomography(AET),4D-STEM,cryogenic electron microscopy,and monochromated electron energy loss spectroscopy(EELS),a comprehensive approach to catalyst observation is achieved.Likewise,this advancement is expected to highlight and expand the crucial role of in-situ TEM in elucidating catalyst surface structures,active sites,and reaction pathways across key catalytic reactions,shaping the field of research in heterogeneous catalysis.Finally,the potential applications,advantages,and challenges of using in-situ TEM are emphasized and addressed in detail.展开更多
Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overv...Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overview of recent investigations into noble metal recovery from waste streams, specifically employing porous organic frameworks(POFs). Additionally, the study delves into the utilization of the resultant composites, enriched with noble metals, in heterogeneous catalysis. Moreover, we offer insights into the challenges faced and outline prospects for the practical implementation of extracting noble metal catalysts from waste streams using POFs, aiming to develop cost-effective, sustainable, and efficient heterogeneous catalysts.展开更多
Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the m...Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the metal species and framework structure permits them to have greater activity,selectivity,and stability over other materials.An in-depth understanding of the complex nature of metal active sites in CPMs is essential for revealing the structure-performance relationships and directing the rational design of such catalysts.Compared to conventional characterization techniques,the rapid development of X-ray absorption spectroscopy(XAS)has provided element-and site-specific deep insights into the electronic and structural information of metal species in CPMs.As such,this review begins by summarizing novel XAS techniques and analysis methods in accurately obtaining such data.Next,the combination of XAS with other high-level characterization methods into disclosing the configuration of active sites in metalcontaining CPMs is presented.Then,the utilization of theory-assisted XAS data analysis in examining complex metal-containing CPM catalysts is discussed.Afterwards,advanced in-situ/operando XAS studies into revealing the working sites in metal-containing CPMs under catalytic conditions are highlighted.We conclude by outlining the future challenges and prospects of XAS measurements,data analyses,and in-situ/operando setups in advancing the study of metal-in-CPM catalysts.展开更多
This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of ca...This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes.MLPs utilize extensive databases from high-throughput density functional theory(DFT)calculations to train models that predict atomic configurations,energies,and forces with near-DFT accuracy.These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods.Coupled with global optimization algorithms,MLPs enable systematic investigations across vast structural spaces,making substantial contributions to the modeling of catalyst surface structures under reactive conditions.The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis.The prevailing challenges faced by this approach are also discussed.展开更多
Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due...Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due to their unique structural advantages(combining molecules catalysts and crystalline porous materials)and tunable topological network.It is essential to provide a comprehensive overview of emerging designs of M(salen)-COFs and corresponding advances in this field.Herein,this review first summarizes the reported metallolinkers and the synthesis methods of M(salen)-COFs.In addition,the review enumerates the excellent M(salen)-COF based heterogeneous catalysts and discusses the fundamental mechanisms behind the outstanding heterogeneous catalytic performance of M(salen)-COFs.These mechanisms include the pore enrichment effect(enhancing local concentration within porous materials to promote catalytic reactions),the three-in-one strategy(integrating enrichment,reduction,and oxidation sites in one system),and the incorporation of a built-in electric field(implanting a built-in electric field in heterometallic phthalocyanine covalent organic frameworks).Furthermore,this review discusses the challenges and prospects related to M(salen)-COFs in heterogeneous catalysis.展开更多
Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti...Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.展开更多
Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,a...Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided.展开更多
In the context of the global pursuit of sustainable energy,dual-atom catalysts(DACs)have attracted widespread attention due to their unique structural and excellent catalytic performance.Unlike the single-atom catalys...In the context of the global pursuit of sustainable energy,dual-atom catalysts(DACs)have attracted widespread attention due to their unique structural and excellent catalytic performance.Unlike the single-atom catalysts,DACs possess two active metal centers,exhibiting intriguing synergistic effects that significantly enhance their efficiency in various electrochemical reactions.This comprehensive review provides an overview of the recent advances in the field of dual-atom catalysts,focusing on their innovative preparation methods and strategies.It further delves into the intrinsic connections between structure and performance,discussing the applications of DACs in hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,photocatalysis,carbon dioxide reduction reaction,and batteries.Lastly,a forward-looking perspective addresses the current challenges and outlines future directions.This review aims to deepen our understanding of DACs and stimulate further innovation in advanced catalysts for energy conversion systems.展开更多
Homogeneous C-H and C-X borylation via transition-metal-catalysis have undergone rapid development in the past decades and become one of the most practical methods for the synthesis of organoboron compounds.However,th...Homogeneous C-H and C-X borylation via transition-metal-catalysis have undergone rapid development in the past decades and become one of the most practical methods for the synthesis of organoboron compounds.However,the catalysts employed in homogeneous catalysis are generally expensive,sensitive,and difficult to separate from the reaction mixture and reuse.With the rapid development of heterogeneous catalysis,heterogeneous C-H and C-X borylation have emerged as highly efficient and sustainable approaches towards the synthesis of organoboron compounds.This review aims to highlight the recent advances in the synthesis of organoboron compounds employing heterogeneous C-H and C-X borylation strategies.We endeavor to shed light on new perspectives and inspire further research and applications in this emerging area.展开更多
基金support from the Full Bridge Fellowship for enabling the research stay at Virginia Tech.H.Xin acknowledge the financial support from the US Department of Energy,Office of Basic Energy Sciences under contract no.DE-SC0023323from the National Science Foundation through the grant 2245402 from CBET Catalysis and CDS&E programs.
文摘Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis routes are dispersed across diverse sources, KGs provide a semantic framework that supports data integration under the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This review aims to survey recent developments in catalysis KGs, describe the main techniques for graph construction, and highlight how artificial intelligence, particularly large language models (LLMs), enhances graph generation and query. We conducted a systematic analysis of the literature, focusing on ontology-guided text mining pipelines, graph population methods, and maintenance strategies. Our review identifies key trends: ontology-based approaches enable the automated extraction of domain knowledge, LLM-driven retrieval-augmented generation supports natural-language queries, and scalable graph architectures range from a few thousand to over a million triples. We discuss state-of-the-art applications, such as catalyst recommendation systems and reaction mechanism discovery tools, and examine the major challenges, including data heterogeneity, ontology alignment, and long-term graph curation. We conclude that KGs, when combined with AI methods, hold significant promise for accelerating catalyst discovery and knowledge management, but progress depends on establishing community standards for ontology development and maintenance. This review provides a roadmap for researchers seeking to leverage KGs to advance heterogeneous catalysis research.
基金financial support from the National Natural Science Foundation of China(22202217)the National Natural Science Foundation of Gansu(24JRRA046)+1 种基金the Department of Science&Technology of Shandong Province for their assistance(2023CXGC010607)the Joint Fund of Shandong Energy Institute and Enterprise(SEI U202308)。
文摘Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core structure encased within an ultrathin graphitic nanoshell(G),and has been widely exploited as a metal-free catalyst or a support for metal catalyst.Its unique curved zero-dimensional structure/surface and tunable defective surface characteristics endow it with outstanding performance in different heterogeneous catalytic systems.The present review summarized the construction of the diverse types of ND@G and a wide-ranging valorization of structure-activity relation with its catalytic mechanism in various reactions.The recent advancements in the impact of active sites’architecture and the interaction between metal and support(preventing the as-formed metal species migration and agglomeration based on ND@G)on the catalytic performance of supported metal catalysts are particularly highlighted.The current challenges and outlooks/opportunities confronted by ND@G materials in catalysis are prospected by virtue of its fundamental physicochemical characterizations and potential catalytic estimation.This in-depth analysis seeks to pave the way for effective utilizing the ND@G in catalytic processes.Based on our knowledge,we also identify the challenges along with this area and offer some perspectives on how to overcome them.
文摘This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金financial support from the National Natural Science Foundation of China(22008032)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)+1 种基金the Shandong Provincial Natural Science Foundation(ZR2020ZD08)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)
文摘In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.
文摘Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.
基金supported by the National Natural Science Foundation of China (No.21573063)the Hunan Provincial Natural Science Foundation of Youth Fund (No.2020JJ3002)+1 种基金Open Fund from Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion (No.2018TP1037201902)the Training Program of Hunan University of Youth Fund。
文摘Herein,we report a microwave-assisted acid-induced post-treatment method for the formation of linker vacancies within Zr-based metal organic frameworks(Zr-MOFs).The number of linker vacancies can be easily regulated with this method by changing the concentration of the HCl solution and the duration of microwave irradiation.The optimized defective UiO-66 showed higher linker defects with a higher specific surface area and thermal stability.The results of the catalytic cyclization of citronella showed that the Zr-MOFs with more defects exhibited enhanced catalytic performance.This work may provide a new method for the creation of defective MOFs with high activity and stability.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the Key R&D plan(East-West Cooperation) of Ningxiathe First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.
基金the National Natural Science Foundation of China(52100156)the National Key R&D Program(2022YFE0125100)+4 种基金Climbing Program of Tianjin University(2023XPD-0006)for the financial supportsupported by the Technology Innovation Program(00432915)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF2021R1A6A1A10045235)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2C2011734)supported by OJEong Resilience Institute,Korea University.
文摘Water is the source of life.However,there is a significant shortage of water resources on Earth,particularly the clean and safe water essential for human consumption[1].According to statistics,a quarter of the world’s population faces severe water scarcity,and nearly 2.2 billion people lack access to safe drinking water[2].
基金National Natural Science Foundation of China(52161145409,21976116)SAFEA of China(“Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)Alexander-von-Humboldt Foundation of Germany(Group-Linkage Program)。
文摘The advances in transmission electron microscopy(TEM)have greatly improved the characterization of heterogeneous catalysts,offering valuable insights into their operational efficacy through the correlation of their physicochemical characteristics with performance,specificity,and robustness at nanoscales.Understanding tangible catalyst attributes and corresponding catalytic processes necessitates the identification and rationalization of catalyst behavior modifications during reaction conditions.Recent innovations in in-situ TEM techniques have opened new avenues to observe the progress of heterogeneous catalysis with unparalleled spatial precision,superior energy resolution,and precise temporal resolution in controlled or realistic catalytic environments.Herein,we have reviewed the established and evolving techniques for monitoring catalysts through the utilization of in-situ TEM.By combining in-situ TEM with cutting-edge spectroscopic methodologies like atomic electron tomography(AET),4D-STEM,cryogenic electron microscopy,and monochromated electron energy loss spectroscopy(EELS),a comprehensive approach to catalyst observation is achieved.Likewise,this advancement is expected to highlight and expand the crucial role of in-situ TEM in elucidating catalyst surface structures,active sites,and reaction pathways across key catalytic reactions,shaping the field of research in heterogeneous catalysis.Finally,the potential applications,advantages,and challenges of using in-situ TEM are emphasized and addressed in detail.
基金supported by the ÅForsk Research Foundation,the Swedish Energy Agency,Formas。
文摘Recovering noble metals from waste resources and incorporating them into catalysts stands out as a promising strategy for advancing sustainability within the catalysis field. This review provides a comprehensive overview of recent investigations into noble metal recovery from waste streams, specifically employing porous organic frameworks(POFs). Additionally, the study delves into the utilization of the resultant composites, enriched with noble metals, in heterogeneous catalysis. Moreover, we offer insights into the challenges faced and outline prospects for the practical implementation of extracting noble metal catalysts from waste streams using POFs, aiming to develop cost-effective, sustainable, and efficient heterogeneous catalysts.
基金the National Natural Science Foundation of China(grant no.22301057)the financial support by the Natural Science Foundation of Hebei Province(grant no.B2023201065)+4 种基金Hebei University High-level Talent Research Program(grant no.521100223025)Y.L.thanks the funding from the National Natural Science Foundation of China(grant no.22305060)Hebei University High-level Talent Research Program(grant no.521100222060)P.Z.acknowledges the financial support from an Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery GrantA.G.W.thanks financial support from an NSERC Canada Graduate Scholarships-Doctoral Program(CGS-D)scholarship.
文摘Metal-containing crystalline porous materials(CPMs)are gaining popularity in heterogeneous catalysis because of their highly crystalline and porous systems,and their excellent chemical tunability.Modification of the metal species and framework structure permits them to have greater activity,selectivity,and stability over other materials.An in-depth understanding of the complex nature of metal active sites in CPMs is essential for revealing the structure-performance relationships and directing the rational design of such catalysts.Compared to conventional characterization techniques,the rapid development of X-ray absorption spectroscopy(XAS)has provided element-and site-specific deep insights into the electronic and structural information of metal species in CPMs.As such,this review begins by summarizing novel XAS techniques and analysis methods in accurately obtaining such data.Next,the combination of XAS with other high-level characterization methods into disclosing the configuration of active sites in metalcontaining CPMs is presented.Then,the utilization of theory-assisted XAS data analysis in examining complex metal-containing CPM catalysts is discussed.Afterwards,advanced in-situ/operando XAS studies into revealing the working sites in metal-containing CPMs under catalytic conditions are highlighted.We conclude by outlining the future challenges and prospects of XAS measurements,data analyses,and in-situ/operando setups in advancing the study of metal-in-CPM catalysts.
基金the NKRDPC(2021YFA1500700)and NSFC(92045303).X.C.is grateful for financial support from ShanghaiTech University.
文摘This Perspective explores the integration of machine learning potentials(MLPs)in the research of heterogeneous catalysis,focusing on their role in identifying in situ active sites and enhancing the understanding of catalytic processes.MLPs utilize extensive databases from high-throughput density functional theory(DFT)calculations to train models that predict atomic configurations,energies,and forces with near-DFT accuracy.These capabilities allow MLPs to handle significantly larger systems and extend simulation times beyond the limitations of traditional ab initio methods.Coupled with global optimization algorithms,MLPs enable systematic investigations across vast structural spaces,making substantial contributions to the modeling of catalyst surface structures under reactive conditions.The review aims to provide a broad introduction to recent advancements and practical guidance on employing MLPs and also showcases several exemplary cases of MLP-driven discoveries related to surface structure changes under reactive conditions and the nature of active sites in heterogeneous catalysis.The prevailing challenges faced by this approach are also discussed.
基金National Natural Science Foundation of China,Grant/Award Numbers:21925104,92261204National Key Research and Development Program of China,Grant/Award Number:2022YFB3807700Scientific Research Staring Foundation of Hainan University,Grant/Award Number:KYQD(ZR)23171。
文摘Metallosalen covalent organic frameworks(M(salen)-COFs)have garnered significant attention as promising candidates for advanced heterogeneous catalysis,including organocatalysis,electrocatalysis,and photocatalysis,due to their unique structural advantages(combining molecules catalysts and crystalline porous materials)and tunable topological network.It is essential to provide a comprehensive overview of emerging designs of M(salen)-COFs and corresponding advances in this field.Herein,this review first summarizes the reported metallolinkers and the synthesis methods of M(salen)-COFs.In addition,the review enumerates the excellent M(salen)-COF based heterogeneous catalysts and discusses the fundamental mechanisms behind the outstanding heterogeneous catalytic performance of M(salen)-COFs.These mechanisms include the pore enrichment effect(enhancing local concentration within porous materials to promote catalytic reactions),the three-in-one strategy(integrating enrichment,reduction,and oxidation sites in one system),and the incorporation of a built-in electric field(implanting a built-in electric field in heterometallic phthalocyanine covalent organic frameworks).Furthermore,this review discusses the challenges and prospects related to M(salen)-COFs in heterogeneous catalysis.
基金support for this work by Hebei Education Department(No.JZX2024004)Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.236Z1404G)+3 种基金the National Natural Science Foundation of China(Nos.22301060 and 21272053)China Postdoctoral Science Foundation(No.2023M730914)the Natural Science Foundation of Hebei Province(Biopharmaceutical Joint Fund No.B2022206008)Project of Science and Technology Department of Hebei Province(No.22567622H)。
文摘Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity.
文摘Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided.
基金supported by the China Postdoctoral Science Foundation(Nos.2021M700981,2022M711787,2021M691759 and 2021TQ0169)Shuimu Tsinghua Scholar program(No.2021SM071)Beijing Natural Science Foundation(No.2224103).
文摘In the context of the global pursuit of sustainable energy,dual-atom catalysts(DACs)have attracted widespread attention due to their unique structural and excellent catalytic performance.Unlike the single-atom catalysts,DACs possess two active metal centers,exhibiting intriguing synergistic effects that significantly enhance their efficiency in various electrochemical reactions.This comprehensive review provides an overview of the recent advances in the field of dual-atom catalysts,focusing on their innovative preparation methods and strategies.It further delves into the intrinsic connections between structure and performance,discussing the applications of DACs in hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,photocatalysis,carbon dioxide reduction reaction,and batteries.Lastly,a forward-looking perspective addresses the current challenges and outlines future directions.This review aims to deepen our understanding of DACs and stimulate further innovation in advanced catalysts for energy conversion systems.
基金supported by grants from the National Natural Science Foundation of China(Nos.22271313,21602096)the Fund for Academic Innovation Teams of South-Central Minzu University(No.XTZ24015)South-Central Minzu University.
文摘Homogeneous C-H and C-X borylation via transition-metal-catalysis have undergone rapid development in the past decades and become one of the most practical methods for the synthesis of organoboron compounds.However,the catalysts employed in homogeneous catalysis are generally expensive,sensitive,and difficult to separate from the reaction mixture and reuse.With the rapid development of heterogeneous catalysis,heterogeneous C-H and C-X borylation have emerged as highly efficient and sustainable approaches towards the synthesis of organoboron compounds.This review aims to highlight the recent advances in the synthesis of organoboron compounds employing heterogeneous C-H and C-X borylation strategies.We endeavor to shed light on new perspectives and inspire further research and applications in this emerging area.