期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pseudocapacitive Heteroatom-Doped Carbon Cathode for Aluminum-Ion Batteries with Ultrahigh Reversible Stability
1
作者 Jiahui Li Jehad KEl-Demellawi +9 位作者 Guan Sheng Jonas Björk Fanshuai Zeng Jie Zhou Xiaxia Liao Junwei Wu Johanna Rosen Xingjun Liu Husam N.Alshareef Shaobo Tu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期150-159,共10页
Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-io... Aluminum(Al)-ion batteries have emerged as a potential alternative to conventional ion batteries that rely on less abundant and costly materials like lithium.Nonetheless,given the nascent stage of advancement in Al-ion batteries(AIBs),attaining electrode materials that can leverage both intercalation capacity and structural stability remains challenging.Herein,we demonstrate a C3N4-derived layered N,S heteroatom-doped carbon,obtained at different pyrolysis temperatures,as a cathode material for AIBs,encompassing the diffusion-controlled intercalation and surface-induced capacity with ultrahigh reversibility.The developed layered N,S-doped corbon(N,S-C)cathode,synthesized at 900℃,delivers a specific capacity of 330 mAhg^(-1)with a relatively high coulombic efficiency of~85%after 500 cycles under a current density of 0.5 A g^(-1).Owing to its reinforced adsorption capability and enlarged interlayer spacing by doping N and S heteroatoms,the N,S-C900 cathode demonstrates outstanding energy storage capacity with excellent rate performance(61 mAhg^(-1)at 20 A g^(-1))and ultrahigh reversibility(90 mAhg^(-1)at 5Ag^(-1)after 10000cycles). 展开更多
关键词 2D carbon adsorption energy heteroatoms-doping high capacity long cycling life
在线阅读 下载PDF
Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries 被引量:3
2
作者 Xi Zhang Xiaohong Sun +3 位作者 Xin Li Xudong Hu Shu Cai Chunming Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期343-363,I0008,共22页
The emergency of high-power electrical appliances has put forward higher requirements for the power density of lithium-ion batteries.Vanadium oxides with large theoretical capacities and high operating voltages are co... The emergency of high-power electrical appliances has put forward higher requirements for the power density of lithium-ion batteries.Vanadium oxides with large theoretical capacities and high operating voltages are considered as prospective alternatives for the cathode of a new generation of lithium-ion batteries.However,the poor rate and cycling performance caused by the sluggish electrons/lithium transportation,irreversible phase changes,vanadium dissolution and large volume changes during the repeated lithium intercalation/deintercalation hinder their commercial development.Several optimizing routes have been carried out and extensively explored to address these problems.Taking V_(2)O_(5),VO_(2)(B),V_(6)O_(13),and V_(2)O_(3)as examples,this article reviewed their crystal structures and lithium storage reactions.Besides,recent progress in modification methods for the electrochemical insufficiencies of vanadium oxides,including nanostructure,heterogeneous atom doping,composite and self-supported electrodes has been systematically summarized and finally,the challenges for the industrialization of vanadium oxide cathodes and their development opportunities are proposed. 展开更多
关键词 Vanadium oxides NANOSTRUCTURE heteroatoms-doping Composite Self-supported Lithium-ion batteries
在线阅读 下载PDF
ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries 被引量:12
3
作者 Huihui Jin Huang Zhou +6 位作者 Pengxia Ji Chengtian Zhang Jiahuan Luo Weihao Zeng Chenxi Hu Daping He Shichun Mu 《Nano Research》 SCIE EI CAS CSCD 2020年第3期818-823,共6页
Iron-based oxygen reduction reaction(ORR)catalysts have been the focus of research,and iron sources play an important role for the preparation of efficient ORR catalysts.Here,we successfully use LiFePO4 as ideal sourc... Iron-based oxygen reduction reaction(ORR)catalysts have been the focus of research,and iron sources play an important role for the preparation of efficient ORR catalysts.Here,we successfully use LiFePO4 as ideal sources of Fe and P to construct the heteroatom doped Fe-based carbon materials.The obtained Fe-N-P co-doped coral-like carbon nanotube arrays encapsulated Fe2P catalyst(C-ZIF/LFP)shows very high half-wave potential of 0.88 V in alkaline electrolytes toward ORR,superior to Pt/C(0.85 V),and also presents a high half-wave potential of 0.74 V in acidic electrolytes,comparable to Pt/C(0.8 V).When further applied into a home-made Zn-air battery as cathode,a peak power density of 140 mW·cm^-2 is reached,exceeds commercial Pt/C(110 mW·cm^-2).Besides,it also presents exceptional durability and methanol resistance compared with Pt/C.Noticeably,the preparation method of such a high-performance catalyst is simple and easy to optimize,suitable for the large-scale production.What’s more,it opens up a more sustainable development scenario to reduce the hazardous wastes such as LiFePO4 by directly using them for preparing high-performance ORR catalysts. 展开更多
关键词 LIFEPO4 waste utilization ZIF-8 heteroatoms-doped oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部